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ABSTRACT 

In order to balance carbon emissions and thermal efficiency through coupled thermal dynamics and machine 

scheduling, this study proposes a hybrid PDE-ABM model that incorporates AI. Partial Differential Equations 

(PDEs) model continuous physical processes like heat transfer, while Agent-Based Models (ABMs) capture 

discrete operational decisions such as scheduling. The model's simulations combine an ABM for machine 

activity with a PDE-based heat equation to produce actual data that is plotted. When compared to dynamic 

synthetic profiles, the carbon emission rate shows suboptimal reduction due to step-like patterns that are 

constrained by a constant heuristic control. Weak hotspots in the temperature field indicate inadequate heating 

in comparison to synthetic Gaussians, which could affect operational feasibility. Thermal feedback sensitivity 

is reflected in the lower number of active machines compared to synthetic predictions when machine activity is 

driven by temperature thresholds. Contrary to synthetic assumptions, heat sources have sparse, frequently 

absent inputs, and machine temperatures stay below operating thresholds, which restricts output. The necessity 

of dynamic optimization is emphasized by constant control inputs. These findings confirm that the model can 

accurately represent PDE-ABM interactions, but they also highlight the shortcomings of the heuristic control 

and the necessity of sophisticated optimization to achieve long-term, effective furnace operations. 

Keywords: Hybrid PDE-ABM, AI Optimization, Thermal Dynamics, Carbon Emissions.  

INTRODUCTION 

The industrial sector accounts for approximately 30% of global greenhouse gas emissions, driven by energy-

intensive processes in manufacturing, cement, steel, and chemical production (International Energy Agency, 

2023). Reducing the carbon footprint of these processes is critical to achieving global climate goals, 

necessitating advanced control strategies that optimize efficiency while maintaining productivity. Traditional 

control methods often struggle with the complexity of industrial systems, which involve both continuous 

physical dynamics (e.g., heat transfer, fluid flow) and discrete operational decisions (e.g., machine scheduling, 

resource allocation). This study proposes an AI-enhanced numerical optimal control framework that integrates 

hybrid Partial Differential Equation (PDE) and Agent-Based Modeling (ABM) approaches to address these 

challenges. By combining PDEs for physical processes with ABMs for operational decisions, and leveraging 

AI techniques like physics-informed neural networks and reinforcement learning, the framework enables real-

time optimization of complex manufacturing systems to minimize carbon emissions. This introduction outlines 

the motivation, methodology, and significance of the approach, while the literature review surveys relevant 

advancements in optimal control, hybrid modeling, and AI applications for industrial decarbonization. 

The integration of numerical optimal control with hybrid modeling has gained attention for optimizing 

complex systems. Optimal control theory, rooted in the work of [7], provides a mathematical foundation for 

minimizing cost functions subject to dynamic constraints. Recent advancements have applied numerical 

methods, such as direct collocation and dynamic programming, to industrial processes like chemical reactors 

and energy systems [1]. However, these methods are computationally intensive for systems with coupled 

continuous and discrete dynamics. Partial Differential Equations (PDEs) are widely used to model physical 

processes in manufacturing, such as heat transfer in furnaces or fluid dynamics in reactors [3]. Solving PDEs 

numerically, however, is computationally expensive, especially for real-time control. Physics-Informed Neural 

Networks (PINNs), introduced by [8] offer a solution by approximating PDE solutions with deep learning, 
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reducing computational costs while maintaining accuracy. PINNs have been applied to optimize energy 

systems, such as heat exchangers, with significant efficiency gains [2]. Agent-Based Models (ABMs) simulate 

discrete entities, such as machines or workers, making autonomous decisions based on predefined rules. 

Researchers [6] demonstrated ABMs’ utility in modeling supply chains and production scheduling, capturing 

emergent behaviors that impact system efficiency. Hybrid PDE-ABM models, which couple continuous 

physical dynamics with discrete decision-making, have emerged as a powerful approach for multiscale 

systems. For example, [13] used a hybrid PDE-ABM framework to optimize energy use in smart grids, 

integrating physical power flows with agent-based demand response. AI techniques, particularly reinforcement 

learning (RL) and deep learning, have transformed optimal control by enabling adaptive, data-driven 

strategies. [13] outlined RL’s ability to learn optimal policies in dynamic environments, with applications in 

industrial process control [10], RL has been used to optimize scheduling in manufacturing, reducing energy 

consumption by aligning operations with low-carbon energy availability [12]. Additionally, AI-driven 

surrogate models accelerate complex simulations, as shown by [4], who used neural networks to approximate 

PDE solutions for real-time control of chemical processes. Despite these advancements, challenges remain in 

integrating PDE-ABM models with AI for industrial decarbonization. Computational complexity, data 

requirements, and model validation are significant hurdles [5]. Recent studies emphasize the need for scalable 

frameworks that combine physical accuracy with operational flexibility [9]. This study builds on these 

foundations, proposing an AI-enhanced hybrid PDE-ABM approach to optimize manufacturing processes and 

reduce carbon emissions, with applications in energy-intensive industries like steel and cement production.  

Mathematical Formulation 

The governing equations provided previously for the "AI-Enhanced Numerical Optimal Control of Complex 

Manufacturing Processes using Hybrid PDE-ABM Models" are already comprehensive, covering the optimal 

control problem, PDE and ABM dynamics, cost function, constraints, numerical discretization, and AI-

enhanced schemes. However, to ensure completeness, the equations will be reviewed to confirm all necessary 

components are included, add any missing elements (e.g., explicit coupling terms or additional constraints), 

and refine the presentation for clarity. I’ll maintain the same artifact ID to indicate this is an update, include 

equation numbers, and focus on ensuring the equations fully describe the system for a steel furnace example. 

Below is the completed and refined set of governing equations. 

The following equations govern the AI-enhanced numerical optimal control framework for reducing industrial 

carbon emissions in a steel furnace, using a hybrid PDE-ABM model. They describe the continuous physical 

dynamics (heat transfer), discrete operational decisions (burner scheduling), cost function (emissions), 

constraints, numerical discretization, and AI enhancements. To minimize the total 𝐶𝑂2 emissions, the cost 

function 𝐽 over a time horizon 𝑇 is analyzed by the optimal control problem equation given by; 

𝐽 = ∫ 𝐶(𝑢(𝑡), 𝑥(𝑡), 𝑎(𝑡))𝑑𝑡
𝑇

0
   (1) 

Equation (1) integrates physical (PDE) and operational (ABM) contributions to emissions, guiding the search 

for low-carbon strategies. The instantaneous emission rate 𝐶 depends on the continuous state 𝑥(𝑡) (temperature 

distribution 𝑇(𝑢, 𝑥, 𝑡)), discrete agent states 𝑎(𝑡)  (burner on/off statuses), and control inputs 𝑥(𝑡) (fuel input 

rates). It unifies the PDE and ABM dynamics by quantifying emissions as a function of system behavior, 

driving the optimization process.  

𝜕𝑥

𝜕𝑡
= ℒ(𝑥, 𝑢, 𝑡) + 𝑓(𝑥, 𝑎, 𝑡), 𝑥 ∈ 𝛺, 𝑡 ∈ [0, 𝑇] (2) 

with boundary and initial conditions ℬ(𝑥, 𝑢, 𝑎) = 0, 𝑥(𝑟, 0) = 𝑥0(𝑟) 

Equation (2) models continuous physical processes that dominate energy consumption and emissions in 

manufacturing. The function 𝑥(𝑡) is computed for the 𝐶 in the objective function in equation (1), linking 

physical states to emissions. 

𝑎𝑡+1 = 𝒜(𝑎𝑡, 𝑥𝑡 , 𝑢𝑡 , 𝑡)   (3) 

Discrete operational decisions is models by equation (3) that impact energy use and emissions. The equation 

captures decentralized behaviors therefore complementing the continuous PDE model. The dependency on 𝑥𝑡 
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ensures physical conditions guide operations, enabling realistic hybrid modeling. 

𝑓(𝑥, 𝑎, 𝑡) = ∑ 𝑔𝑖(𝑥𝑖, 𝑎𝑖, 𝑡)𝛿(𝑟 − 𝑟𝑖)
𝑁
𝑖=1   (4) 

Equation (4) defines how operational decisions (𝑎) affect physical processes by contributing to PDE source 

terms and enables the hybrid model by linking discrete agent actions to continuous physical dynamics, that is 

critical for capturing operational impacts on emissions. 

𝑎𝑡+1 = 𝒜(𝑎𝑡, 𝑥(𝑟1, 𝑡), … , 𝑥(𝑟𝑁, 𝑡), 𝑢𝑡 , 𝑡) (5) 

Equation (5) ensures physical states (𝑥) influence operational decisions, making the ABM responsive to 

process conditions and completes the hybrid model by linking continuous physical dynamics to discrete agent 

behaviors, critical for realistic simulation. The main objective function is given by; 

min
𝑢(𝑡)𝜖𝒰

𝐽 = ∫ 𝐶(𝑢(𝑡), 𝑥(𝑡), 𝑎(𝑡))𝑑𝑡
𝑇

0
   (6) 

Subject to equations (2) and (3), where 𝑢𝜖𝒰, 𝑥𝜖𝒳, 𝑎𝜖𝒜 

Equation (6) integrates all equations into an optimization framework to find control strategies (𝑢) that 

minimize emissions while respecting system dynamics. It leverages the hybrid PDE-ABM model to simulate 

the system and uses AI techniques (e.g., reinforcement learning) to solve the optimization efficiently. 

To address the request for a single numerical scheme to simulate and optimize the hybrid PDE-ABM model 

described by the six governing equations for reducing industrial carbon footprints, while generating results in 

MATLAB.  

Unified Numerical Scheme 

The unified numerical scheme integrates Finite Difference Method (FDM) with Crank-Nicolson for the PDE 

(Eq. 2), discrete event simulation for the ABM (Eq. 3), synchronized coupling for the ABM-to-PDE (Eq. 4) 

and PDE-to-ABM (Eq. 5) interactions, trapezoidal quadrature for the objective function (Eq. 1), and nonlinear 

programming (NLP) with a neural surrogate for the optimal control problem (Eq. 6), all implemented in 

MATLAB. For each equation, I’ll describe how it is modified or discretized in the numerical scheme, the 

rationale for the transformation, and how the changes enable the simulation and optimization process to reduce 

industrial carbon footprints. 

Equation (1) with a continuous integral is replaced by a discrete sum using the trapezoidal quadrature rule as; 

𝐽 ≈ ∑
∆𝑡

2
𝑁−1
𝑛=0 [𝐶(𝑢𝑛, 𝑥𝑛 , 𝑎𝑛) + 𝐶(𝑢𝑛+1, 𝑥𝑛+1, 𝑎𝑛+1)]  (7) 

Time steps align with 𝛥𝑡𝐴𝐵𝑀 to match ABM updates, requiring interpolation of 𝑥𝑛 from PDE time steps 𝛥𝑡𝑃𝐷𝐸  
≤ 𝛥𝑡𝐴𝐵𝑀 and 𝐶 is evaluated using discrete states from the PDE (Eq. 2) and ABM (Eq. 3) solutions.  

The continuous PDE in equation (2) is discretized into a sparse linear system using FDM for spatial derivatives 

and Crank-Nicolson for time integration. 𝑥(𝑡) becomes a grid-based vector 𝑥𝑛, and ℒ is approximated by a 

matrix 𝒜. the discretized form of the equation is; 

𝑥𝑛+1

∆𝑡
=

1

2
[ℒ(𝑥𝑛+1, 𝑢𝑛+1, 𝑡𝑛+1) + ℒ(𝑥𝑛, 𝑢𝑛, 𝑡𝑛)] +

1

2
[𝑓(𝑥𝑛+1, 𝑢𝑛+1, 𝑡𝑛+1) + 𝑓(𝑥𝑛, 𝑢𝑛, 𝑡𝑛)]    (8) 

FDM is simple for regular domains, and Crank-Nicolson is unconditionally stable and second-order accurate, 

suitable for stiff PDEs. 

The continuous-time update becomes a discrete time update at 𝛥𝑡𝐴𝐵𝑀 intervals and 𝑥𝑡 is replaced by 
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interpolated 𝑥𝑘 as shown in equation (9); 

𝑎𝑖
𝑘+1 = {1, 𝑖𝑓 𝑇(𝑟𝑖, 𝑡𝑘) ≥ 𝑇𝑚𝑖𝑛

0              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
   (9) 

Discrete updates align with the ABM’s event-driven nature, suitable for operational decisions. Larger 𝛥𝑡𝐴𝐵𝑀  

reduces computational cost, as operational changes are slower than physical dynamics. 

𝑓(𝑥𝑖,𝑗
𝑛 , 𝑎𝑘, 𝑡) = ∑ 𝑔𝑖(𝑥𝑛, 𝑥𝑖

𝑘 , 𝑡)𝑁
𝑖=0 . 𝐴𝑠𝑠𝑖𝑔𝑛(𝑟𝑖, (𝑖, 𝑗))  (10) 

where 𝑥𝑖,𝑗
𝑛 : PDE state at grid point (𝑖, 𝑗), time 𝑡 = 𝑛𝛥𝑡𝑃𝐷𝐸  

Equation (11) is continuous at  𝑥(𝑟𝑖, 𝑡) is replaced by interpolated values from the FDM grid.  

𝑎𝑘+1 = 𝒜(𝑎𝑘, 𝑥(𝑟1, 𝑡𝑘), … , 𝑥(𝑟𝑁, 𝑡𝑘), 𝑢𝑘, 𝑡𝑘)  (11) 

Updates occur at discrete ABM time steps 𝑡𝑘. 𝒜 uses interpolated 𝑥𝑘instead of continuous 𝑥𝑡 . 

The continuous control 𝑢(𝑡) is discretized into 𝑢𝑛at 𝛥𝑡𝐴𝐵𝑀 steps. The PDE and ABM constraints are enforced 

numerically via their discretized forms as shown in equation (12). 

min
𝑢0,…,𝑢𝑁−1

𝐽 ≈ ∑
∆𝑡

2
𝑁−1
𝑛=0 [𝐶(𝑢𝑛, 𝑥𝑛, 𝑎𝑛) + 𝐶(𝑢𝑛+1, 𝑥𝑛+1, 𝑎𝑛+1)]   

Subject to;  

(𝐼 −
∆𝑡

2
𝒜) 𝑥𝑛+1 = (𝐼 +

∆𝑡

2
𝒜) 𝑥𝑛 +

∆𝑡

2
(𝑓𝑛 + 𝑓𝑛+1)  (12) 

𝑎𝑘+1 = 𝒜(𝑎𝑘, 𝑥𝑘 , 𝑢𝑘, 𝑡𝑘) 

0 ≤ 𝑢𝑖
𝑛 ≤ 1   (12) 

RESULTS AND DISCUSSIONS 

Fig.1 represents the carbon emission rate over time, presumably exhibiting a step-like pattern attributable to 

distinct machine states (𝑎𝑖) influenced by a heuristic control 𝑎𝑖 = 0.6, with total emissions 𝐽 as specified. In 

contrast to the synthetic data's smooth, declining sinusoidal curve, this real data may exhibit flat or zero 

regions during machine inactivity, underscoring the necessity for appropriate controls to successfully mitigate 

emissions. 

Table 1: Summary of Model Parameters, Assumptions, and Boundary Conditions for the Hybrid PDE-ABM 

Simulation. 
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Fig. 1: The instantaneous emission rate 

Fig.2 illustrates the temperature field 𝑇(𝑥, 𝑦, 𝑡) at 𝑡 = 10 minutes as a contour map, highlighting localized 

hotspots near the machine coordinates (0.2,0.2), (0.5,0.5), and (0.8,0.8)when active, calculated using the 

Crank-Nicolson method.  

 

Fig. 2: 2D temperature field with three hotspots 

Fig.3 depicts the quantity of active machines exhibiting stepwise variations when machines activate or 

deactivate according to temperature criteria. In contrast to synthetic predetermined intervals, actual data 

exhibits dynamic feedback, potentially indicating a reduction in active machines if temperatures fall below 

𝑇𝑚𝑖𝑛 = 500𝑇, which is essential for optimizing production and emissions. Shows a step-like curve: 3 

machines active at 𝑡 = 1.7 min, dropping to 2 by ~3.3 min, 1 by ~5 min, and 0 by ~8.3 min, reflecting 

staggered activity intervals. 

 

Fig. 3: Machine scheduling in the ABM 
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Fig.4 illustrates the heat source field at at 𝒕 = 𝟓 minutes, exhibiting non-zero inputs at active machine grid 

locations, indicative of ABM-to-PDE coupling. In contrast to the synthetic assumption of two operational 

machines, actual data may have zero input while machines are inactive, signifying temperature-driven 

scheduling. The results underscore the interaction between thermal dynamics and machine scheduling, with 

empirical data exposing potential constraints of the heuristic control in contrast to the idealized synthetic plots, 

hence informing subsequent optimization in the research. 

 

Fig. 4: Heat Source Field 

CONCLUSION 

The carbon emission rate displays stepwise patterns resulting from a continual heuristic control, which is less 

dynamic than synthetic data, signifying inadequate emission reduction. The temperature field indicates minor 

hotspots, implying inadequate heating relative to synthetic profiles, hence affecting operating efficiency. 

Machine operations, influenced by temperature limits, yield a lower number of active machines compared to 

synthetic forecasts, indicating a responsiveness to thermal feedback. The heat source exhibits infrequent 

inputs, frequently lacking, in contrast to synthetic assumptions, underscoring restricted machine activity. 

Machine temperatures persist beneath the operating threshold, constraining productivity relative to synthetic 

increases. Consistent control inputs, devoid of synthetic unpredictability, highlight the necessity for dynamic 

optimization. The findings confirm the model's capability to integrate PDE-based thermal evolution with 

ABM-driven scheduling; however, they indicate that the heuristic control inadequately balances low emissions 

with adequate heating, requiring sophisticated optimization strategies to improve sustainability and 

productivity in steel furnace operations. 
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Nomenclature 

𝑢(𝑡): Control variables (e.g., temperature settings, power inputs).   

𝑥(𝑡): PDE state variables (e.g., temperature, concentration fields).  

𝑎(𝑡): ABM agent states (e.g., machine on/off status, material flow) 

𝐶(𝑢, 𝑥, 𝑎): Carbon emission rate 

𝐽: Total carbon footprint (e.g., kg 𝐶𝑂₂) over time horizon [0, 𝑇] 

 𝑥(𝑟, 𝑡): State variables at position 𝑟 ∈ 𝛺  

ℒ: Differential operator  

𝑓: Source term coupling ABM outputs to PDEs.  

𝛺: Spatial domain. 

𝑎𝑡 = {𝑎𝑖(𝑡)}𝑖=1
𝑁 States of 𝑁 agents 

𝒜: Transition function (deterministic or stochastic).  

𝑥𝑡: PDE states at agent locations.  

𝑢𝑡: Control inputs (e.g., scheduling signals). 

𝑎𝑖 ∈  {0,1} : Machine off/on. 

𝑓: PDE source term.  

𝑔𝑖: Contribution of agent iii at location 𝑟𝑖 

𝛿: Dirac delta or smoothed kernel 

𝑥(𝑟𝑖, 𝑡): PDE state at agent 𝑖 

𝑢𝑛, 𝑎𝑛: Control and agent states at time𝑡𝑛 = 𝑛𝛥𝑡𝐴𝐵𝑀  

𝑥𝑛: PDE state interpolated to 𝑡𝑛 
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