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ABSTRACT 

This paper discusses the intertwining of the Conjugate Gradient Method (CGM) as a scaling factor for 

Newton’s algorithm, which is employed to determine the solution of the constrained optimization problems. 

The constrained problem has to be converted to an unconstrained problem via the multiplier method, after 

which a scaling is introduced to Conjugate Gradient Method (CGM) of Hestenes and Stiefel that forces the 

problem to collapse toward the resulting equation quickly. Newton’s algorithm, which was embedded in the 

algorithm of the multiplier method, was used to carry out the minimization process. At each descent direction 

search, a formulated dynamic is used to update the Lagrange multiplier, such that this is done at each one-

dimensional search until the optimality is reached. The use of this method was not limited to optimization 

problems alone, it has been extended to optimal control problems of the Lagrange and the Meyer forms, with a 

huge success recorded when the results obtained were compared with results of other existing methods. 

Keywords: Scaling Factor, Multiplier Method, Constrained Optimization, Penalty Parameter, Conjugate 

Gradient Method (CGM), Penalty Function. 

INTRODUCTION 

In the study of a collection of techniques that is employed for finding solution to quadratic augmented 

Lagrangian based on constrained optimization problems, for which the functions of the multipliers hinge on 

the penalty parameters, this leads to Lagrangian that the multipliers are nonlinear. We equally studied some 

methods for unconstrained multivariate problems, such as the Conjugate Gradient Algorithm (CGM) and 

Newton’s method, that are known for their reliability and swift convergence. The conjugate gradient method is 

preferred to the Newton’s method because it converges very fast in a specified number of iteration than the 

Newton’s method as supported by [1], but when a problem is subjected to one or more constraints, experience 

shows that the iterate of the conjugate gradient method may move away from the feasible region in its quest to 

locate an optimal path in a short time, thereby wasting computer time that is not regarded as a characteristics of 

a good algorithm according to [2] and [3].  
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On the other hand, Newton’s method moves slowly in search of the global minimum, thereby generating more 

iterations. To balance the two sides, a non-differentiable conjugate gradient method of Hestenes and Stiefel is 

proposed by [4] and [5] as 

 𝑓(𝑥) = 𝑓0 + 〈𝑎, 𝑥〉 +
1

2
〈𝑥, 𝐻𝑥〉         (1) 

was taken into consideration for the multiplier method that is of the form  

𝑓(𝑥) = 𝜓(𝑥𝑛) + 𝜆𝑔(𝑥𝑛) + 𝜇(𝑔𝑥𝑛)2       (2) 

and Newton’s method, which had been embedded in the multiplier algorithm (2), was considered for the 

minimization process of (1). Since the conjugate gradient method was used as the scaling factor for the 

multiplier method, and the algorithm of Newton’s method is used to carry out the minimization process, the 

three methods shall be briefly discussed in the next sections. 

Newton’s method 

Suppose 𝑓(𝑥) is approximated by a quadratic function at 𝑥𝑘 such that the equation below holds for the 

function: 

𝑓(𝑥) = 𝑓(𝑥𝑘) + ∇𝑇𝑓(𝑥𝑘)∇𝑥𝑘 +
1

2
(∇𝑥𝑘)𝑇𝐻(𝑥𝑘)∇𝑥𝑘      (3) 

where 𝐻(𝑥𝑘) is the Hessian matrix of 𝑓(𝑥). The method makes use of the second order (quadratic) 

approximation of 𝑓(𝑥) at 𝑥𝑘 and thus employs second order information about 𝑓(𝑥). The method takes into 

account the curvature of 𝑓(𝑥𝑘) at 𝑥𝑘 in identifying better search directions than can be obtained via the 

gradient method as opined by [6]. The minimum of the quadratic approximation of 𝑓(𝑥) in (3) to each of the 

components of ∇𝑥𝑘 and equating the resulting expression to zero gives: 

∇𝑓(𝑥) = ∇f(𝑥𝑘) + 𝐻(𝑥𝑘)∇𝑥𝑘 = 0         (4) 

therefore 

𝑥𝑘+1 − 𝑥𝑘 = ∇𝑥𝑘 = −[𝐻(𝑥𝑘)]−1∇𝑓(𝑥𝑘)       (5) 

If 𝑓(𝑥) is quadratic, only one step is required to reach the minimum of 𝑓(𝑥). However, for a general nonlinear 

objective function, the minimum of 𝑓(𝑥) cannot be reached in one step, therefore the Newton’s method has to 

be modified so that (5) can be adjusted to conform to the form 

𝑓(𝑥) = 𝑓(𝑥𝑘 + 𝛼𝑠𝑘) = 𝑓(𝑥𝑘) + ∇𝑇𝑓(𝑥𝑘)α𝑠𝑘 +
1

2
(𝛼𝑠𝑘)𝑇𝐻(𝑥𝑘)α𝑠𝑘    (6) 

where ∇𝑥𝑘 = 𝛼𝑠𝑘  

if  
𝑑𝑓

𝑑𝛼
(𝑥𝑘 + 𝛼𝑠𝑘) = 0 = ∇𝑇𝑓(𝑥𝑘)𝑠𝑘 + (𝑠𝑘)𝑇𝐻(𝑥𝑘)𝑠𝑘   then,  

𝛼 =
−∇𝑇𝑓(𝑥𝑘)𝑠𝑘

(𝑠𝑘)
𝑇

𝐻(𝑥𝑘)𝑠𝑘
     (7) 

By introducing the parameter for the step length into (5), then (5) becomes 

𝑥𝑘+1 − 𝑥𝑘 = −𝛼𝑘[𝐻(𝑥𝑘)]−1∇𝑓(𝑥𝑘)     (8) 

The authors in [7] observed that the direction 𝑠 is now given by 𝑠𝑘 = [𝐻(𝑥𝑘)]−1∇𝑓(𝑥𝑘) and the step length 𝛼𝑘 

(𝛼 is a scalar denoting the distance moved along the search direction) and (8) is applied iteratively until the 

terminating criteria is/are satisfied [8]. 
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The Conjugate Gradient Method 

The Conjugate Gradient Method (CGM) by [9] is one of the variations of the gradient method. In its simplest 

form, the gradient method uses the iterative scheme:  

 𝑥𝑖+1 = 𝑥𝑖 − 𝛼∇𝑓(𝑥)          (9)  

to generate a vectors sequence, {𝑥𝑖}𝑖=1
𝑛 , that converges to the minimum of 𝑓(𝑥) achieved on minimizing the 

function  

𝑓(𝑥) =
1

2
𝑥𝑇𝐴𝑥 − 𝑏𝑇𝑥          (10)  

The parameter 𝛼 that appears in (9) is referred to as the step length of the descent direction sequence. In 

particular, if 𝐹 is a function on the Hilbert space ℋ such then in the Hilbert space 𝐹 admits a Taylor series  

expansion given as: 

𝑓(𝑥) = 𝑓0 + 〈𝑎, 𝑥 〉ℋ +
1

2
〈𝑥, 𝑄𝑥〉ℋ         (11)  

Where 𝑎, 𝑥 𝜖 ℋ and ℋ is a positive definite matrix that is symmetric and called the linear operator according 

to [10]. It can be shown by [11] that it possesses a unique minimum 𝑥∗ in ℋ, and that the gradient of 𝑓(𝑥) at 

the minimum,  ∇𝑓(𝑥∗) = 0. The CGM algorithm for iteratively locating the minimum 𝑥∗ of in ℋ as described 

by [11] is as follows:  

Step 1: The first element 𝑥0𝜖 ℋ is guessed while the remaining members of the sequence are computed with 

the aid of the formulae in steps 2 through 6.  

Step 2: The descent direction is computed using 𝑝0 = −𝑔0      (12)  

Step 3: Set 𝑥𝑖+1 = 𝑥𝑖 + 𝛼𝑖𝑝𝑖; where the step length 𝛼𝑖 =
〈𝑔𝑖, 𝑔𝑖 〉ℋ

〈𝑝𝑖,   𝑄𝑝𝑖 〉ℋ
     (13)  

Step 4: Update the gradient value using the dynamic 𝑔𝑖+1 = 𝑔 + 𝛼𝑖𝑄𝑝𝑖   (14)  

Step 5: Set 𝑝𝑖+1 = −𝑔𝑖+1 + 𝛽𝑖𝑝𝑖;  𝛽𝑖 =
〈𝑔𝑖+1,   𝑔𝑖+1 〉ℋ

〈𝑔𝑖,   𝑔𝑖 〉ℋ
      (15)  

Step 6: If for some i, then, terminate the sequence; else set i = i +1 and return to step 3.  

In the iterative steps 2 through 6 above, denotes the descent direction at the i-th step of the algorithm, is the 

step length of the descent sequence {𝑥𝑖}, and denotes the gradient of 𝐹 at steps 3, 4, and 5 of the algorithm 

reveal the crucial role of the linear operator 𝑄 in determining the step length of the descent sequence and also 

in generating a conjugate direction of search.  

The conjugate gradient method is an iterative method that enjoys the quadratic convergence, ensuring that it 

converges in at most 𝑛 iterations if there is no rounding off errors are encountered. Starting with an initial 

estimates 𝑥0 of the solution ℎ, one determines successfully new estimate value for 𝑥0, 𝑥1, 𝑥2, …  of 𝑘.  

The estimate 𝑥𝑖 is a value closer to ℎ than 𝑥𝑖+1; hence, at each step of the iteration, the residual, 𝑟𝑖 = 𝑘 − 𝐴𝑥𝑖, 
is computed. Normally, this vector can be used to determine the usability of the estimate 𝑥𝑖. However, this 

measure is not a reliable one because it is possible to construct cases in which the squared residual |𝑟𝑖|
2 

increases at each step while the length of the error vector, ℎ − 𝑥𝑖, will decrease, forcing the round-off error to 

always occur except under very unusual circumstances.  

The Multiplier Method  

The method of multipliers or the augmented reduces the possibilities of ill conditioning by introducing explicit 

Lagrange multiplier estimates into the function to be optimized. In contrast to the penalty function, the 
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multiplier method largely preserves smoothness and guaranteed optimality within a short time without 

necessarily drag the penalty parameter to infinity [12].  

For clarity, let us consider the equality constraint problem below:  

Minimize ∅(𝑥),   

Subject to ℎ(𝑥)     (16) 

The quadratic penalty function 𝑄(𝑥, 𝜇) is set to penalizes the constraint violations by squaring the 

infeasibilities and scaling them by 
𝜇

2
, however, the approximate minimizers 𝑥𝑘 of 𝑄(𝑥, 𝜇𝑘) do not quite satisfy 

the feasible conditions 𝑐𝑖(𝑥) = 0, for 𝑖 = 1, 2, … , 𝑚  instead, they are perturbed so that 

𝑐𝑖(𝑥𝑘) = −
𝜆𝑖

𝜇𝑘
  𝑓𝑜𝑟 𝑖 = 1, 2, … , 𝑚        (17) 

just to be sure that 𝐶𝑖(𝑥) → 0 as 𝜇𝑘 → ∞. To avoid this systematic perturbation, [13] observed that the 

multiplier function ℓ(𝑥, 𝜆, 𝜇) achieves this goal by including an explicit estimate of the Lagrange multiplier  𝜆, 
based on the modified objective function  

 ℓ(𝑥, 𝜆, 𝜇) = 𝑓(𝑥𝑘) − ∑ 𝜆𝑖
𝑘 + ∑ 𝑐𝑖

2𝑚
𝑖=1

𝑚
𝑖=1      (18) 

0 = ∇𝑥ℓ(𝑥𝑘, 𝜆𝑘 , 𝜇𝑘) = ∇𝑓(𝑥∗) − [∑ 𝜆𝑖
𝑘 + ∑ 𝑐𝑖

2𝑚
𝑖=1

𝑚
𝑖=1 ]∇𝑐𝑖(𝑥𝑘)     (19) 

By comparing (17) with 

 ∇𝑓(𝑥𝑘) − 𝐴(𝑥∗)𝑇𝜆∗ = 0       (20) 

We have the updated formula 

𝜆𝑖
∗ ≈ 𝜆𝑖

𝑘 − 𝜇𝑘𝑐𝑖(𝑥𝑘) for 𝑖 = 1, 2, … , 𝑚   (21) 

By rearranging this expression, we have 𝑐𝑖(𝑥𝑘) ≈ −
1

2
(𝜆𝑖

∗ − 𝜆𝑖
𝑘), so we conclude that if 𝜆𝑘   is close to the 

optimal multiplier vector 𝜆∗ [14]. The infeasibility in 𝑥𝑘 will be much smaller than 
1

𝜇𝑘
, rather than being 

proportional to 
1

𝜇𝑘
 the relation (21) immediately suggests a formula for improving our current estimate 𝜆𝑘

 of 

the multiplier vector using the approximate minimum 𝑥𝑘 [15], one then can set 𝜆𝑖
𝑘+1 ≈ 𝜆𝑖

𝑘 − 𝜇𝑘𝑐𝑖(𝑥𝑘)  for all 

𝑖 ≥ 1. 

Theorem 1:  

Let 𝑥∗ be the local solution of (16) at which the LICQ is satisfied (i.e., the gradients ∇𝑐𝑖(𝑥∗) for 𝑖 = 1, 2, … , 𝑚 

are linearly independent vectors) and the second order conditions are satisfied when 𝜆 = 𝜆∗. Then, there is a 

threshold value 𝜇̅ such that for all 𝜇 ≥ 𝜇̅, 𝜆∗ is a restricted local minimum of ℓ(𝑥, 𝜆∗ , 𝜇) as opined by [16]. 

Proof 

We prove the result by showing that 𝑥∗ satisfies the second-order sufficient conditions to be a strict local 

minimum of ℓ(𝑥, 𝜆∗, 𝜇) for all 𝜇 that are sufficiently large, i.e., 

(i) ∇𝑥ℓ(𝑥∗, 𝜆∗, 𝜇) = 0     (22) 

(ii) 𝛻𝑥𝑥
2 ℓ(𝑥∗, 𝜆∗, 𝜇) = 0     (23)  
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Since 𝑥∗ is a local solution of (8) at which the LICQ is satisfied, the sufficient condition can be applied to 

deduce that  ∇𝑥ℓ(𝑥∗, 𝜆∗, 𝜇) = 0 and c𝑖(𝑥∗) = 0, 𝑖 = 1, 2, … , 𝑚, so that  

 ∇𝑥ℓ(𝑥∗, 𝜆∗, 𝜇) = ∇𝑓(𝑥∗) − ∑ [𝜆𝑖
∗ − 𝜇𝑐(𝑥∗)]𝑚

𝑖=1 ∇c𝑖(𝑥∗) = 0     (24)  

For the second part of (23), we write   

∇𝑥𝑥
2 ℓ(𝑥∗, 𝜆∗, 𝜇) = ∇𝑥𝑥

2 ℓ(𝑥∗, 𝜆∗, 𝜇) + 𝜇𝐴𝑇𝐴      (25) 

where A is the constraint gradient matrix evaluated at 𝑥∗. If the claim in (25) is not true, then for each integer 

𝑘 ≥ 1, one could choose a vector 𝑤𝑘   with ‖𝑤𝑘‖ = 1 such that  

0 ≥ 𝑤𝑘
𝑇∇𝑥𝑥

2 ℓ(𝑥∗, 𝜆∗ , 𝜇)𝑤𝑘 = 𝑤𝑘
𝑇∇𝑥𝑥

2 ℓ(𝑥∗, 𝜆∗, 𝜇)𝑤𝑘 + 𝑘‖𝐴𝑤𝑘‖2
2 ≤ 0    (26) 

Therefore, as 𝑘 → ∞ (2.12) gives rise to 

 ‖𝐴𝑤𝑘‖2
2 ≤ −(

1

𝑘
)𝑤𝑘

𝑇∇𝑥𝑥
2 ℓ(𝑥∗, 𝜆∗ , 𝜇)𝑤𝑘 → 0       (27) 

Since the vectors {𝑤𝑘} lie within the compact set, they could have an accumulation point 𝑤, then the limit of 

(27) implies that 𝐴𝑤 = 0. More so, by rearranging (26), one arrives at  

𝑤𝑘
𝑇∇𝑥𝑥

2 ℓ(𝑥∗, 𝜆∗ , 𝜇)𝑤𝑘 = −𝑘‖𝐴𝑤𝑘‖2
2 ≤ 0      (28) 

So, taking the limits of both sides of (28) gives rise to 𝑤𝑘
𝑇∇𝑥𝑥

2 ℓ(𝑥∗, 𝜆∗, 𝜇)𝑤𝑘 ≤ 0. However, this inequality 

contradicts the second–order conditions, such that when it is applied to (8), it states that one must have 

𝑤𝑘
𝑇∇𝑥𝑥

2 ℓ(𝑥∗, 𝜆∗ , 𝜇)𝑤𝑘 ≤ 0 for all non-zero vector 𝑤 with 𝐴𝑤 = 0. Hence, the second part of (23) holds for all 

𝜇 sufficiently large. 

SCALED MULTIPLIER METHOD  

The scaled multiplier method preserved the smoothness of the Newton’s method [17], fast convergence of the 

Conjugate gradient method [18] and robustness of the Multiplier method [5] to form an algorithm that is free 

of ill conditioning and does not necessarily drag the penalty parameter to infinity before optimality is 

guaranteed. Unlike the scaling of the entire process in [19], the SMM is all about introducing the scaling factor 

into the classical multiplier method.   

The method transformed a constrained problem of the type (16) to an unconstrained one of the form (2), the 

Function (1) of Hestenes and Stiefel [20] as a scaling factor for the function (2). Newton’s method for solving 

systems of necessary optimality conditions, i.e., Newton’s Method for solving unconstrained optimization 

problems, was considered for the minimization, and the updating of 𝜆 was embedded into each iteration of 

Newton’s Method until some indicated conditions for optimality are satisfied.  

The techniques of changing 𝜆 at each one-dimensional search were tried for many problems with great success. 

The complete iterative procedure of the method after transformation of the constrained problem to an 

unconstrained one can be summarized as follows: 

(i). Scale the multiplier method to conform with the function 𝑓0 + 〈𝑎, 𝑥〉 +
1

2
〈𝑥, 𝐻𝑥〉, where 𝑓0  is the function 

value of at 𝑥0, 𝐻 is a positive definite symmetric linear operator, while 𝑎 is in Hilbert space.  

(ii). Knowing the initial guess, choose 〈𝑎, 𝐻𝑥〉 as the gradient, where 𝐻 is a function of 𝜆 and 𝜇   

(iii) Compute −[𝐻−1(𝑥)][〈𝑎, 𝐻𝑥〉]   

(iv) Update 𝑥𝑖+1 = 𝑥𝑖 − [𝐻−1(𝑥)][〈𝑎, 𝐻𝑥〉]    
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(v) Use the formula 𝜆𝑖
𝑘+1 ≈ 𝜆𝑖

𝑘 − 𝜇𝑖𝑐𝑖(𝑥𝑘), to update the value of 𝜆 where constraint equation(s) is given as c.  

Steps (i) through (v) have to be repeated until either of the specified condition are met, 𝑐𝑖 → 0, 〈𝑎, 𝑥𝐻〉 ≈ 0.  

Data and Analysis 

Having itemized the algorithm of the Scaled Multiplier method, we now apply the method to the following 

constrained optimization problems: 

Problem 1: 

Minimized 𝜙(𝑥) = 3𝑥2 + 𝑦2 + 2𝑥𝑦 + 6𝑥 + 2𝑦  

subject to ℎ(𝑥) = 2𝑥 − 𝑦 − 4  

Problem 2: 

Minimized 𝜙(𝑥) = (𝑥 − 3)2 + (𝑦 − 4)2  

subject to ℎ(𝑥) = 2𝑥 + 𝑦 − 3  

Problem 3: 

Minimized 𝜙(𝑥) = 3𝑥2 + 𝑦2 + 2𝑥𝑦 + 6𝑥 + 2𝑦 

subject to ℎ(𝑥) = 𝑥2 − 𝑦 − 1  

Comparison of the Numerical Results 

To ensure a wide range of comparison, the Scaled Multiplier Method (SMM) will be compared with other 

methods like Penalty Function Method (PFM), Lagrange Multiplier (LM), and ERKM in [21] with ERKM is 

close to SMM because of its modification but SMM is doing credibly well due to the scaling factor. The 

comparison will only reflect the iteration at which the result of each of the methods coincide and the values of   

𝜆∗, ∅(𝑥∗), and 𝜓(𝑥∗) at that iteration. 

Table 1: Table of results for Problem 1 

Methods        Iterations 𝜇 𝑥∗ 𝑦∗ *  ∅(𝑥∗) 𝜓(𝑥∗)
 

𝑆𝑀𝑀 7 1 0.63625 −2.72711 −2.180923 3.525362 3.54545 

𝐸𝑅𝐾𝑀 9 1 0.63635 −2.72723 −2.181803 3.545368 3.54568 

𝑃𝐹𝑀 11 1000 0.62835 −2.73723  −2.183885 3.442365 3.70268 

𝐿𝑀 14 − 0.63625 −2.72700 −2.179156 3.524764 3.53467 

𝑥∗ = 0.65 and 𝑦∗ = −0.27 

Table 2:    

Methods        Iterations 𝜇 𝑥∗ 𝑦∗ *  ∅(𝑥∗) 𝜓(𝑥∗)
 

𝑆𝑀𝑀 10 1 0.18998 2.68437 2.81027 9.78768 9.85657 

𝐸𝑅𝐾𝑀 12 1 0.19998 2.59998 2.80002 9.79921 9.80001 

𝑃𝐹𝑀 25 1000 0.18989 2.58999 2.93541 9.72311 9.81011 

𝐿𝑀 22 − 0.63625 2.72700 −2.17915 3.524764 3.53467 

𝑥∗ = 0.2 and 𝑦∗ = 2.3 
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Table 3:  

Methods        Iterations 𝜇 𝑥∗ 𝑦∗ *  ∅(𝑥∗) 𝜓(𝑥∗)
 

𝑆𝑀𝑀 8 1 −0.734257 −0.43852 −0.22531 −1.10463 −1.22453 

𝐸𝑅𝐾𝑀 21 1 −0.749985 −0.43748 −0.24987 −1.21095 −1.21093 

𝑃𝐹𝑀 27 1000 −0.737500 −0.41785 −1.92587 −1.20031 −1.21098 

𝐿𝑀 25 − −0.636257 −1.72700 −2.17915 3.524764 3.53467 

𝑥∗ = 0.75 and 𝑦∗ = −0.45 

CONCLUSION 

Unlike using the ERKM, PFM, and LM, the SMM behaves relatively well in terms of fewer iterations to reach 

the convergence point, relatively very low penalty parameter, 𝜇 gives one the desired result against situations 

where large penalty function values have to be used in PFM; however, the PFM has to go through many 

iterations before its result coincides or comes close to the existing results. 

This paper clearly shows the derivation and numerical implementation of the scaling factor in the multiplier 

method, which interprets the new technique for its easy applicability to solve constrained optimization 

problems. In the near future, one hopes to devote more attention to the method’s application to solve 

optimization problems with equality and inequality constraints. 
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