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ABSTRACT 

This study focuses on analyzing the spectral characteristics of vegetation, investigating the spectral 

signatures of different vegetation types, and identifying the most informative spectral bands for vegetation 

identification. The interaction between vegetation and electromagnetic radiation creates unique spectral 

signatures that serve as a fingerprint for classification. The study highlights the significance of various 

spectral bands, including the Visible Spectrum (Blue, Green, Red), Near-Infrared (NIR), Short-Wave 

Infrared (SWIR), and Thermal Infrared (TIR), in providing insights into vegetation properties. Vegetation 

indices, such as Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), and 

Soil-Adjusted Vegetation Index (SAVI), are quantitative metrics used to assess vegetation density, health, 

and vitality. The findings of this study demonstrate the importance of understanding the spectral 

characteristics of vegetation and the limitations of vegetation indices. The effectiveness of vegetation 

indices is influenced by environmental factors, and their application demands careful consideration of the 

local environmental context. This study contributes to the development of more accurate and robust methods 

for vegetation identification and classification, using optical satellite images, and has implications for 

remote sensing applications in environmental monitoring and management. 

Keywords: Vegetation spectral signatures, Remote sensing, Vegetation indices, Spectral bands 

Environmental monitoring 

 

INTRODUCTION 

The fundamental basis for identifying vegetation from optical satellite imagery, lies in comprehending how 

different vegetation types interact with electromagnetic radiation across various spectral bands (Chuvieco, 

2020). This interaction creates unique spectral signatures that serve as a fingerprint for classification. 

Different surface materials exhibit distinct responses to electromagnetic radiation, reflecting or absorbing 

energy in specific parts of the spectrum, which makes them detectable by remote sensing instruments 

(Elachi & Van Zyl, 2021). For vegetation, this spectral signature is a complex interplay resulting from the 

interaction between incoming light (modified by the atmosphere) and the intricate phylogenetic, 

biophysical, biochemical, morphological, physiological, and phenotypic traits of the plant (Moor et al.,  

2017; Paul & Frey, 2023). 

A key characteristic of healthy green vegetation is its strong absorption of red wavelengths due to 

chlorophyll, coupled with a robust reflection in the Near-Infrared (NIR) wavelengths (Hernández-Clemente 

et al., 2019). The overall spectral signature of a crop canopy, for instance, is not monolithic but rather a 

mixture of the reflectance from the crop itself, any exposed soil background, and other canopy components 
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like stems and weeds (Kuester & Spengler, 2018). The subtle uniqueness in the spectral behavior of 

different vegetation species, particularly in the precise positions and magnitudes of maxima and minima 

within their reflectance curves, forms the bedrock for accurate species detection and differentiation (Chen et 

al., 2023). 

 

MATERIALS AND METHODS 

The study is a review work on the existing literature that were conducted on satellite image interpretation 

and information extraction, specifically, spectral characteristics of vegetation. The study focuses on 

analyzing the spectral characteristics of vegetation, investigating the spectral signatures of different 

vegetation types and identifying the most informative spectral bands for vegetation identification. Remote 

sensing techniques, such as spectral signature analysis and vegetation index calculation, were reviewed to 

extract information on the application of satellite imagery for vegetation mapping. A comprehensive 

literature review was conducted to identify the most informative spectral bands and vegetation indices for 

vegetation identification. The materials that were used, were obtained from google scholar search engine. 

Initially, the search engine was customized to obtain publications made within the last eight years. However, 

few studies that were conducted earlier than that, were also used where necessary. 

 

Key Spectral Bands and Their Significance 

 

Optical satellite sensors capture data across various spectral regions, each offering unique insights into 

vegetation properties. 

 Visible Spectrum (Blue, Green, Red): These bands collectively form the Red, Green, and Blue 

(RGB) composite, which provides a colorful representation of the Earth’s surface, akin to what the 

human eye perceives (Chen et al., 2023). 

 Blue Band: This band is particularly valuable for specialized applications such as flower 

counting and bloom density analysis due to its heightened sensitivity to the presence of flowers 

(Angel et al., 2025). It enables the clear distinction of flowers from surrounding leaves, where 

red or green bands might fail to differentiate them. Beyond bloom detection, the blue band is 

essential for generating true color (RGB) composites, which are fundamental for visual 

interpretation and context. It also plays a crucial role in the formulation of several vegetation 

indices, including the Enhanced Vegetation Index (EVI), Green Leaf Index (GLI), and Visible 

Atmospherically Resistant Index (VARI), and contributes to correcting for atmospheric 

interference and soil background noise (van der Kooi et al., 2016; Yamaguchi et al., 2008). 

 Green Band: Healthy vegetation typically exhibits a local maximum reflectance in the green 

spectral region, as some green light is reflected rather than absorbed by chlorophyll 

(Buschmann et al., 2012). 

 Red Band: In contrast, vegetation shows a local minimum reflectance in the red spectral 

region, a direct consequence of strong absorption by chlorophyll for photosynthesis (Ustin & 

Jacquemoud, 2020). 

 Near-Infrared (NIR): The NIR band is profoundly informative, revealing crucial details about 

vegetation health and vigor that are imperceptible to the human eye (Sarvakar & Thakkar, 2024). 

Vegetation strongly reflects in the NIR region due to its cellular structure, making it a powerful 

indicator of photosynthetic activity and overall plant health (Glenn et al., 2008). Studies have shown 

that the near-infrared band can explain a significant portion (41%) of the variance in species richness, 

while visible wavelengths contribute far less predictive power (Rocchini et al., 2007). This 

observation has led to the conceptualization of a “near infrared way” for assessing species richness 

directly from remotely sensed data. A common practice involves combining Near-Infrared, Red, and 

Green bands to create false-color composites that effectively highlight vegetation in red, making it 
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stand out distinctly (Hayem-Ghez et al., 2015). 

 Short-Wave Infrared (SWIR): The SWIR spectrum, typically defined between 1 µm and 3 µm, is a 

reflected light region that is invisible to human perception (Wilson et al., 2015). It possesses unique 

properties, including the ability to penetrate haze and smoke, and a high sensitivity to moisture 

content. SWIR bands are particularly recognized for their strong absorption by water, as well as 

distinct absorption bands related to water vapor and CO2 (Hansen & Malchow, 2008). This sensitivity 

to moisture allows SWIR data to be correlated with critical metrics such as leaf water content, overall 

plant water stress, and even the severity of forest fire burns. Common SWIR bands utilized in satellite 

imagery fall between 1.55 µm and 1.75 µm, with some sensors also incorporating bands around 1.25 

µm and 2.1-2.4 µm (Fagbohun, 2015). Notably, Landsat 8 OLI introduced a new SWIR band (1.36- 

1.38 µm) positioned within a region where water vapor typically absorbs radiation, offering further 

diagnostic capabilities (Rogalski & Chrzanowski, 2017). 

 Thermal Infrared (TIR): TIR data, typically spanning the 3-14 µm range, provides unique and 

invaluable information, especially for detecting vegetation water stress and retrieving biophysical 

parameters (Gerhards et al., 2019). Canopy temperature, derived from TIR measurements, serves as a 

key indicator of water stress, canopy conductance, and transpiration, making it an effective tool for 

optimizing irrigation schedules (Nanda et al., 2018). Crucially, TIR can detect pre-symptomatic water 

stress, meaning stress conditions can be identified before any visual symptoms become apparent. 

Beyond stress detection, TIR data is also instrumental in retrieving biophysical parameters such as 

Leaf Area Index (LAI), demonstrating fewer saturation issues at high LAI values compared to 

visible/NIR/SWIR data (Berger et al., 2022). 

The increasing spectral resolution of optical sensors, transitioning from multispectral to hyperspectral 

capabilities, enables a finer discrimination of vegetation properties and stress levels. However, this 

advancement comes with increased costs and data complexity (Upadhyay & Kumar, 2018). While broad 

bands like NIR are highly useful for general vegetation health assessment and specific bands like Blue prove 

effective for detecting phenomena such as flower presence, the discussion of hyperspectral sensors as 

“powerful tools for determination and precise detection of vegetation dominant species” due to their “almost 

continuous spectra and narrow bands” signifies a move towards more detailed and specific analysis 

(Thenkabail et al., 2018). The ability to identify precise absorption bands for water vapor and CO2 in the 

SWIR spectrum, and the capacity of TIR to detect pre-symptomatic stress, further underscores this enhanced 

diagnostic power (Gerhards et al., 2019). This progression, however, involves a clear trade-off: 

hyperspectral data, while providing richer information, incurs higher economic costs and may offer 

relatively lower spatial resolution compared to RGB data. This implies that while greater spectral 

information offers superior diagnostic capabilities, it also introduces challenges related to data acquisition 

cost, processing complexity, and potentially a reduction in spatial detail. Consequently, the selection of 

sensor type and spectral resolution becomes a strategic decision, contingent upon the specific needs and 

budgetary constraints of the application. 

 

Vegetation Indices and their Applications 

 

Vegetation indices (VIs) are quantitative metrics specifically designed to assess vegetation density, health, 

and vitality from remote sensing data. They are indispensable tools in precision agriculture and broader 

environmental monitoring efforts (Giovos et al., 2021). The process of normalization and ratioing inherent 

in VI calculations helps to minimize the influence of external factors, such as illumination changes, and 

establishes robust correlations with ground-based measurements, thereby enabling the estimation of 

vegetation conditions across large areas (Meng et al., 2024). 

 Normalized Difference Vegetation Index (NDVI): 

 Formula: NDVI = (NIR – Red) / (NIR + Red). 
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 Applications: Widely used for crop health monitoring, biomass estimation, drought assessment, 

land cover mapping, and long-term vegetation studies. 

 Typical Values: Values range from -1 to +1. Healthy vegetation typically falls between 0.2 and 

0.8, with dense, healthy vegetation exhibiting values from 0.6 to 0.9. Bare soil usually registers 

around 0 to 0.1, and water bodies around -0.25 to 0. 

 Significance: Higher NDVI values are indicative of healthier and denser vegetation, making this 

index highly effective for tracking vegetation changes over time and comparing plant health 

across different regions (Ozyavuz et al., 2015). 

Enhanced Vegetation Index (EVI): 

 Formula: EVI = 2.5 * ((NIR – Red) / (NIR + 6 * Red – 7.5 * Blue + 1)) (Ozyavuz et al., 2015). 

 Applications: Primarily used for vegetation health monitoring, biomass estimation, land surface 

phenology, rainforest monitoring, and detailed canopy structure studies. 

 Significance: EVI is designed to mitigate the saturation issues often encountered with NDVI in 

areas of dense canopy, thus providing a more accurate representation of vegetation health in 

such environments. The inclusion of the blue band in its formula helps to correct for 

atmospheric interference and soil background noise, enhancing its robustness. 

Soil-Adjusted Vegetation Index (SAVI): 

 Formula: SAVI = ((NIR – Red) / (NIR + Red + L)) * (1 + L), where L is a soil brightness 

correction factor, typically set to 0.5 (Ozyavuz et al., 2015). 

 Applications: Particularly useful for vegetation health monitoring in areas with varying soil 

cover, monitoring arid regions, and assessing vegetation during early crop growth stages where 

soil is often exposed. 

 Significance: SAVI’s key advantage lies in its ability to minimize the influence of soil 

brightness on the vegetation signal, making it especially valuable in regions with sparse 

vegetation where soil background effects can significantly distort other vegetation indices. 

Normalized Difference Water Index (NDWI): 

 Formula: NDWI = (Green – NIR) / (Green + NIR) (Ozyavuz et al., 2015). 

 Applications: This index is designed to indicate vegetation water content and water stress 

levels. It is applied for drought monitoring, irrigation planning, assessing fire risk, and mapping 

wetlands. 

 Significance: Positive NDWI values generally signify healthy, well-watered vegetation, while 

negative values suggest water stress. Water bodies typically exhibit high positive values (>0.3). 

Other specialized indices: 

 Green Normalized Difference Vegetation Index (GNDVI): (NIR – Green) / (NIR + Green) – 

Used for assessing overall vegetation health, quantifying green vegetation cover, and general 

crop monitoring. 

 Difference Vegetation Index (DVI): NIR – Red – Applied for vegetation vigor assessment, 

drought monitoring, and crop yield estimation. 

 Normalized Green–Red Difference Index (NGRDI): (G−R)/(G+R) – Utilized for crop 

monitoring, vegetation health assessment, and land cover mapping. 

 Chlorophyll Index (CI): (R750 – R705) / (R750 + R705) – Directly related to the chlorophyll 

content within vegetation. 

 Leaf Area Index (LAI): (K * CT) / (1 – CT) – Important for crop growth monitoring, forest 

structure analysis, and ecosystem modeling. 

 Normalized Difference Infrared Index (NDII): Employs the SWIR spectrum (specifically 

1.55 µm – 1.75 µm) to identify historic fire scar damage and assess canopy water stress. 

 Visible Vegetation Index (VVI): Derived from RGB channels, with low values indicating bare 

ground and high values corresponding to vegetation. 
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 Excessive Greenness (ExG): A continuous index also derived from RGB, where low values 

indicate bare ground and high values imply vegetation. 

Table 1: Common Vegetation Indices for Optical Remote Sensing 
 

Index 

Name 
Formula 

Key Spectral 

Bands Used 

Primary 

Applications 

Typical 

Value Range 
Significance/Advantages 

 

 

NDVI 

 

(NIR – Red) / 

(NIR + Red) 

 

 

Red, NIR 

Crop health, 

biomass, drought, 

land cover 

mapping, long- 

term studies 

 

-1 to +1 

(Healthy: 0.2- 

0.8) 

 

Widely used, higher values = 

healthier/denser vegetation 

 

 

EVI 

2.5 * ((NIR – 

Red) / (NIR + 6 

* Red – 7.5 * 

Blue + 1)) 

 

Blue, Red, 

NIR 

Dense canopy 

health, biomass, 

phenology, 

rainforest 

monitoring 

 

-1 to +1 

(Healthy: 0.2- 

0.8) 

 

Less sensitive to saturation in 

dense canopies, corrects for 

atmospheric/soil noise 

 

 

SAVI 

 

((NIR – Red) / 

(NIR + Red + 

L)) * (1 + L) 

 

Red, NIR 

(L=soil factor) 

Vegetation health 

in varying soil 

cover, arid 

regions, early 

crop growth 

 

-1 to +1 

(Healthy: 0.2- 

0.8) 

 

Minimizes soil brightness 

influence, useful in sparse 

vegetation 

 

 

NDWI 

 

 

(Green – NIR) / 

(Green + NIR) 

 

 

Green, NIR 

Vegetation water 

content/stress, 

drought, 

irrigation, fire 

risk, wetland 

mapping 

 

-1 to +1 

(Positive: 

healthy/wet) 

 

 

Indicates water content, 

useful for stress detection 

 

GNDVI 

 

(NIR – Green) / 

(NIR + Green) 

 

Green, NIR 

Vegetation health, 

green cover 

quantification, 

crop monitoring 

 

– 

Similar to NDVI but uses 

green band, sensitive to 

chlorophyll content 

 

DVI 

 

NIR – Red 

 

Red, NIR 

Vegetation vigor, 

drought 

monitoring, crop 

yield estimation 

 

– 

 

Simple difference, direct 

measure of vigor 

 

NGRDI 

 

(G-R)/(G+R) 

 

Green, Red 

Crop monitoring, 

vegetation health, 

land cover 

mapping 

 

– 

 

Uses visible bands, sensitive 

to greenness 

 

CI 
(R750 – R705) 

/ (R750 + R705) 

Red Edge, 

NIR (specific 

wavelengths) 

Chlorophyll 

content 

 

– 
Directly related to plant 

pigment concentration 

 

LAI 

 

(K * CT) / (1 – 

CT) 

 

– (derived 

from spectral) 

Crop growth, 

forest structure, 

ecosystem 

modeling 

 

– 

 

Quantifies leaf area per unit 

ground area 
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NDII 

(NIR – SWIR)/ 

(NIR +SWIR) 

(Conceptual) 

NIR, SWIR 

(1.55-1.75µm) 

Fire scar damage, 

canopy waterstress 

 

– 
Sensitive to water content in 

vegetation, penetrates haze 

 

VVI 

Based on RGB 

channels with 

reference green 

 

RGB 

Vegetation 

filtering, bare 

ground distinction 

0 to 1 (Low: 

bare ground, 

High: 

vegetation) 

 

Cost-effective, uses standard 

RGB data 

 

ExG 

2g-r-b 

(normalized 

RGB) 

 

RGB 

Vegetation 

filtering, 

greenness 

quantification 

Continuous 

(Low: bare 

ground, High: 

vegetation) 

Effective for distinguishing 

green vegetation from 

background 

CONCLUSION 

Vegetation indices are not universally robust; their effectiveness is influenced by environmental factors, 

necessitating context-specific application and potential adaptation. While VIs like NDVI are widely 

adopted, research highlights their limitations. For example, EVI was developed to address NDVI’s 

saturation issues in dense canopies and includes corrections for atmospheric interference and soil 

background noise. Similarly, SAVI is specifically formulated to mitigate the influence of soil brightness. 

More critically, studies explicitly demonstrate that the “influence of soil type on soil-adjusted vegetation 

index (SAVI) and enhanced vegetation index (EVI2) was approximately equal and varied from 60% 

(shooting phase) to 80% (tillering phase)”. This research further contends that the simplification of soil 

background influence to merely brightness variations leads to an underestimation of soil’s true impact on 

crop canopy reflectance and vegetation indices. This suggests that a “universal vegetation index is unlikely” 

and that indices should ideally be “adapted to local soil conditions”. 

This observation implies that while VIs are powerful tools, their application demands careful consideration 

of the local environmental context. Future research efforts should therefore focus on developing more 

robust, context-aware indices or sophisticated models that explicitly account for these intricate 

environmental influences. 

 

REFERENCES 

1. Angel, Y., Raiho, A., Kathuria, D., Chadwick, K. D., Brodrick, P. G., Lang, E., Ochoa, F., & 

Shiklomanov, A. N. (2025). Deciphering the spectra of flowers to map landscape-scale blooming 

dynamics. Ecosphere, 16(2), e70127. 

2. Berger, K., Machwitz, M., Kycko, M., Kefauver, S. C., Van Wittenberghe, S., Gerhards, M., Verrelst, 

J., Atzberger, C., van der Tol, C., Damm, A., Rascher, U., Herrmann, I., Paz, V. S., Fahrner, S., 

Pieruschka, R., Prikaziuk, E., Buchaillot, M. L., Halabuk, A., Celesti, M., . . . Schlerf, M. (2022). 

Multi-sensor spectral synergies for crop stress detection and monitoring in the optical domain: A 

review. Remote Sensing of Environment, 280,   113198. 

https://doi.org/https://doi.org/10.1016/j.rse.2022.113198 

3. Buschmann, C., Lenk, S., & Lichtenthaler, H. K. (2012). Reflectance spectra and images of green 

leaves with different tissue structure and chlorophyll content. Israel Journal of Plant Sciences, 60(1- 

2), 49-64. 

4. Chen, Y., Wang, Y., Zhang, F., Dong, Y., Song, Z., & Liu, G. (2023). Remote sensing for lithology 

mapping in vegetation-covered regions: methods, challenges, and opportunities. Minerals, 13(9), 1153. 

5. Chuvieco, E. (2020). Fundamentals of satellite remote sensing: An environmental approach. CRC 

press. 

http://www.rsisinternational.org/


Page 1174 

INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN APPLIED SCIENCE (IJRIAS) 

ISSN No. 2454-6194 | DOI: 10.51584/IJRIAS |Volume X Issue VII July 2025 

www.rsisinternational.org 

 

 

 

6. Elachi, C., & Van Zyl, J. J. (2021). Introduction to the physics and techniques of remote sensing. John 

Wiley & Sons. 

7. Fagbohun, B. J. (2015). Combining dominant spectral features in airborne SWIR and TIR imagery for 

mineralogical mapping University of Twente]. 

8. Gerhards, M., Schlerf, M., Mallick, K., & Udelhoven, T. (2019). Challenges and future perspectives 

of multi-/Hyperspectral thermal infrared remote sensing for crop water-stress detection: A review. 

Remote Sensing, 11(10), 1240. 

9. Giovos, R., Tassopoulos, D., Kalivas, D., Lougkos, N., & Priovolou, A. (2021). Remote sensing 

vegetation indices in viticulture: A critical review. Agriculture, 11(5), 457. 

10. Glenn, E. P., Huete, A. R., Nagler, P. L., & Nelson, S. G. (2008). Relationship between remotely- 

sensed vegetation indices, canopy attributes and plant physiological processes: What vegetation 

indices can and cannot tell us about the landscape. Sensors, 8(4), 2136-2160. 

11. Hansen, M. P., & Malchow, D. S. (2008). Overview of SWIR detectors, cameras, and applicat ions. 

Thermosense Xxx, 

12. Hayem-Ghez, A., Ravaud, E., Boust, C., Bastian, G., Menu, M., & Brodie-Linder, N. (2015). 

Characterizing pigments with hyperspectral imaging variable false-color composites. Applied Physics 

A, 121, 939-947. 

13. Hernández-Clemente, R., Hornero, A., Mottus, M., Peñuelas, J., González-Dugo, V., Jiménez, J. C., 

Suárez, L., Alonso, L., & Zarco-Tejada, P. J. (2019). Early diagnosis of vegetation health from high- 

resolution hyperspectral and thermal imagery: Lessons learned from empirical relationships and 

radiative transfer modelling. Current forestry reports, 5, 169-183. 

14. Kuester, T., & Spengler, D. (2018). Structural and spectral analysis of cereal canopy reflectance and 

reflectance anisotropy. Remote Sensing, 10(11), 1767. 

15. Meng, X., Peng, J., Hu, J., Li, J., Leng, G., Ferhatoglu, C., Li, X., García-García, A., & Yang, Y. 

(2024). Validation and expansion of the soil moisture index for assessing soil moisture dynamics from 

AMSR2 brightness temperature. Remote Sensing of Environment, 303, 114018. 

https://doi.org/https://doi.org/10.1016/j.rse.2024.114018 

16. Moor, H., Rydin, H., Hylander, K., Nilsson, M. B., Lindborg, R., & Norberg, J. (2017). Towards a 

trait-based ecology of wetland vegetation. Journal of Ecology, 105(6), 1623-1635. 

17. Nanda, M. K., Giri, U., & Bera, N. (2018). Canopy temperature-based water stress indices: potential 

and limitations. Advances in crop environment interaction, 365-385. 

18. Ozyavuz, M., Bilgili, B., & Salici, A. (2015). Determination of vegetation changes with NDVI 

method. Journal of environmental protection and ecology, 16(1), 264-273. 

19. Paul, E., & Frey, S. (2023). Soil microbiology, ecology and biochemistry. Elsevier. 

20. Rocchini, D., Ricotta, C., & Chiarucci, A. (2007). Using satellite imagery to assess plant species 

richness: The role of multispectral systems. Applied Vegetation Science, 10(3), 325-331. 

21. Rogalski, A., & Chrzanowski, K. (2017). Infrared devices and techniques. In Handbook of 

optoelectronics (pp. 633-686). CRC Press. 

22. Sarvakar, K., & Thakkar, M. (2024). Different Vegetation Indices Measurement Using Computer 

Vision. In Applications of Computer Vision and Drone Technology in Agriculture 4.0 (pp. 133-163). 

Springer. 

23. Thenkabail, P. S., Lyon, J. G., & Huete, A. (2018). Advances in hyperspectral remote sensing of 

vegetation and agricultural crops. In Fundamentals, sensor systems, spectral libraries, and data 

mining for vegetation (pp. 3-37). CRC press. 

24. Upadhyay, V., & Kumar, A. (2018). Hyperspectral remote sensing of forests: technological 

advancements, opportunities and challenges. Earth Science Informatics, 11(4), 487-524. 

25. Ustin, S. L., & Jacquemoud, S. (2020). How the optical properties of leaves modify the absorption 

and scattering of energy and enhance leaf functionality. Remote sensing of plant biodiversity, 349-384. 

26. van der Kooi, C. J., Elzenga, J. T. M., Staal, M., & Stavenga, D. G. (2016). How to colour a flower: 

on the optical principles of flower coloration. Proceedings of the Royal Society B: Biological Sciences, 

283(1830), 20160429. 

http://www.rsisinternational.org/


Page 1175 

INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN APPLIED SCIENCE (IJRIAS) 

ISSN No. 2454-6194 | DOI: 10.51584/IJRIAS |Volume X Issue VII July 2025 

www.rsisinternational.org 

 

 

 

27. Wilson, R. H., Nadeau, K. P., Jaworski, F. B., Tromberg, B. J., & Durkin, A. J. (2015). Review of 

short-wave infrared spectroscopy and imaging methods for biological tissue characterization. 

Journal of biomedical optics, 20(3), 030901-030901. 

28. Yamaguchi, M., Haneishi, H., & Ohyama, N. (2008). Beyond red–green–blue (RGB): spectrum-based 

color imaging technology. Journal of Imaging Science and Technology, 52(1), 10201-10201-10201- 

10215. 

http://www.rsisinternational.org/

	ABSTRACT
	INTRODUCTION
	MATERIALS AND METHODS
	Key Spectral Bands and Their Significance
	Vegetation Indices and their Applications
	Enhanced Vegetation Index (EVI):
	Soil-Adjusted Vegetation Index (SAVI):
	Normalized Difference Water Index (NDWI):
	Other specialized indices:

	CONCLUSION
	REFERENCES

