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ABSTRACT 

Smart contracts are the backbone of decentralized applications, enabling secure and autonomous execution of 

digital contracts on blockchain platforms. However, increasing complexity and immutability of these contracts 

are causing severe security threats. Traditional auditing techniques, although helpful, are limited in scalability 

and mostly incapable of detecting emerging vulnerabilities. This has led to a growing desire to extend the 

deployment of Artificial Intelligence (AI) and Natural Language Processing (NLP) techniques to the audit and 

security of smart contracts. In this paper, we present a comprehensive review of AI-based approaches of auditing 

and securing smart contracts, highlighting recent advances in machine learning, deep learning, and transformer-

based architectures. We discuss stateof-the-art tools and frameworks, compare their methodology, and outline 

their respective strengths and weaknesses. We also discuss important challenges like availability of datasets, 

generalization to unknown vulnerabilities, interpretability of AI results, and integration with existing blockchain 

platforms. Finally, we discuss future research directions and propose future work for the development of more 

secure, intelligent, and scalable systems for analyzing smart contracts.  

Keywords: Smart Contracts, Vulnerability Detection, Artificial Intelligence, Natural Language Processing, 

Blockchain Security 

INTRODUCTION   

Smart contracts are a core component of blockchain application, especially on platforms such as Ethereum. They 

are bits of computer programming that activate automatically upon a set of conditions being satisfied, without 

the necessity of a middleman in digital contracts. Their ability to automate transactions and enforce rules has 

propelled rapid adoption across industries. The same features that provide power to smart contracts immutability, 

transparency, and autonomous execution also pose enormous security threats. Once put in place, a contract is 

immutable, transparency, and autonomous execution also introduce significant security challenges.  

Several high-profile attacks, including The DAO hack [1], the Parity wallet bug [2], and a spate of recent hacks 

against the DeFi protocols [3], have revealed deep vulnerabilities in smart contract code. Not only did the attacks 

result in financial losses, but they also questioned the security and integrity of blockchain systems. Thus, the 

need for trustworthy smart contract auditing has increased exponentially.  

Traditional auditing techniques, including manual code examination and rule-based static analysis tools like 

Mythril [1], Oyente[2], and Slither[4], do offer security to some degree but are inherently restrictive. Manual 

verification takes enormous man-hours, is prone to human error, and cannot handle the growing number of 

contracts in the space efficiently. Static analyzers do have automation associated with them but are reliant on 

known signatures for vulnerabilities and cannot detect complex or emerging logical bugs. To overcome these 

shortcomings, researchers have moved towards Artificial Intelligence (AI) and Natural Language Processing 

(NLP) methods. These methods approach smart contract code as a formal language, where machine learning 

models can be applied for pattern detection, anomaly detection, and semantic analysis. Transformer models such 

as CodeBERT[4], GPT[5], and LLaMA[6] have been found to possess unprecedented abilities in source code 

analysis, and their use in smart contract auditing is being researched actively. This paper presents an in-depth 
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review of AI-powered smart contract analysis, with emphasis on the convergence of blockchain security, AI, 

and NLP. We seek to classify and contrast existing efforts, find common approaches, point out their benefits and 

limitations, and specify the most outstanding challenges yet to be addressed. Based on this work, we also propose 

directions for future work that can make smart contract auditing systems more secure, understandable, and 

scalable.  

Over the past few years, the speedy growth of decentralized finance (DeFi), tokenized assets, and Web3 

platforms has tremendously accelerated the use of smart contracts in a big way. Programmable contracts are 

being used in a variety of industries such as insurance, gaming, supply chain, identity verification, and trading 

of digital assets. With the developing blockchain ecosystem, smart contracts have moved beyond their early 

uses in simple token trade or crowdfunding and now support complex logic and high-value transactions worth 

billions of dollars. 

But this added complexity has turned smart contracts into a target-rich environment for malicious behavior. 

Their deterministic nature, once on-chain, is cemented in place—so that even small errors in coding can have 

irreversible consequences. As smart contracts handle increasingly complex logic and high-value operations, 

even minor defects in their code can escalate into widespread security vulnerabilities. 

Classic security practices in software development have generally included iterative patching and updates. 

Smart contracts, however, are resistant by nature to post-deployment changes. This aspect increases the focus 

on strict pre-deployment security testing and accurate vulnerability detection.  

LITERATURE REVIEW  

The area of smart contract security has progressed considerably, with researchers and practitioners exploring 

various automated methods to discover vulnerabilities. The work initially started with rule-based static analysis 

tools such as Mythril, Oyente, and Slither [1][2][4]. They execute bytecode or contract source code symbolically 

and by pattern matching to identify known types of vulnerabilities such as integer overflows, access control 

issues, unchecked call returns, and timestamp dependencies, integer overflow, and unchecked return value call. 

However, their pre-existing rule dependency limits them from identifying more complex or newer bugs. 

To counteract the drawbacks of traditional tools, machine learning (ML) techniques have been used. For 

instance, Liu et al. used deep neural networks to classify Solidity smart contracts based on their vulnerability 

features [3]. Similarly, Tereshchenko and Komleva introduced a methodology that utilizes attention-based 

networks like CodeBERT to model the semantic and syntactic features of smart contract code, leading to higher 

detection rates for annotated datasets [4]. 

Recent research has evolved from simple classifiers towards more complex frameworks. Khodadadi and 

Tahmoresnezhad created a multimodal hybrid model merging token embeddings and control flow graph (CFG) 

features with FastText and BiGRU. Their approach showed solid performance on well-known benchmark sets 

like ScrawlD [5]. Mi et al. further proposed a metric-learning approach that scans low-level bytecode 

representations with neural embeddings for detecting subtle security flaws, especially those that might not be 

apparent at the high-level code [6]. Transformer models have attracted more attention in this area due to their 

promise. 

Models such as CodeBERT, GraphCodeBERT, and finetuned GPT and LLaMA variants have demonstrated their 

promise in vulnerability detection, code summarization, and audit explanation [7][8]. Yu (2024) put forward a 

Retrieval-Augmented Generation (RAG) system based on vector search and large language models (LLMs) to 

improve the accuracy and explainability of smart contract analysis [9]. Following the same line, Wei et al. 

introduced LLM-SmartAudit, a multiagent system where multiple instances of GPT work together to simulate 

human-like auditing activities [10]. 

Several in-depth reviews have tried to profile the area of AI-based smart contract analysis. De Baets et al. 

reviewed over 80 papers, categorizing approaches into static, dynamic, and hybrid, and also pointing to the 

growing relevance of Graph Neural Networks (GNNs) and transformers [11]. Ozdag (2025) compiled top 
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shortcomings in current datasets, such as small sizes and poor label consistency, and also pointed to the relevance 

of explainable artificial intelligence (XAI) for this safety-critical use case [12]. 

Despite the progress made, existing research suggests significant challenges. Among these challenges are the 

generalizability of models across diverse codebases, the lack of consistent evaluation standards, the difficulty 

of annotating large datasets, and the integration of artificial intelligence models into realistic blockchain 

development environments. 

This study is based on previous reviews in that it not only addresses the technical methods but also the 

overarching trends that govern this field, namely explainability, scalability, and applicability to the real world. 

We classify the reviewed methods in the following section and identify the most significant methodologies in 

the analysis of artificial intelligence-based smart contracts. 

Dataset Landscape and Benchmarking Gaps 

The development of AI-based smart contract auditing is directly tied to the availability and reliability of data 

sets on which it is trained, tested, and benchmarked. Yet the present data ecosystem of freely available data sets 

is severely constrained in size and representativeness. 

Most of the literature depends on datasets like SmartBugs, ScrawlD, or synthetically created sets of Solidity 

contracts. These datasets are prone to severe class imbalances, with vulnerabilities like integer overflow 

appearing overly frequent, while less evident or logic-based ones are rare. Moreover, several of these datasets 

comprise rather short, artificial examples that do not properly represent the sophistication of actual contracts 

used in decentralized finance (DeFi) or enterprise contexts. 

In addition, there is inconsistency in the manner datasets are labeled and annotated. Datasets are labeled at either 

the function level or have line-level annotation or binary vulnerability flags. One of the largest obstacles is the 

lack of standardized benchmarking protocols. Different studies employ a variety of different metrics—accuracy, 

F1-score, precision, and recall—without a shared evaluation protocol. In addition, the absence of a shared 

dataset or challenge set impedes the making of consistent and reproducible comparisons between models. 

Developing shared benchmarks with uniform labeling, vulnerability taxonomies, and evaluation metrics is 

needed in order to enable significant progress and cross-study validation within this area. 

 Table I. Comparison of Selected Ai-Based Smart Contract Auditing Approaches 

Authors Dataset Methodology Contribution Summary 

Liu et al. (2022) SmartBugs DNN-based token 

embeddings 

Early ML classification for Solidity 

vulnerabilities 

Khodadadi & 

Tahmoresnezhad (2023) 

ScrawlD BiGRU + FastText 

+ CFG 

Multimodal hybrid model combining 

token & structure 

Mi et al. (2022) Bytecode 

Set 

Metric learning on 

bytecode 

Detected low-level flaws using neural 

embeddings 

Yu (2024) Custom GPT-4 + Vector 

Retrieval 

Used RAG for semantic analysis & 

interpretability 

Wei et al. (2024) Open-

source 

Multi-agent GPT 

Auditing 

Simulated expert audits using 

collaborative agents 

  

In-Depth Review of Selected Research Works 

The area of smart contract security has progressed considerably, with researchers and practitioners exploring 

various automated methods to discover vulnerabilities. The work initially started with rule-based static analysis 

tools such as Mythril, Oyente, and Slither. These tools symbolically execute bytecode or contract source code 
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and perform pattern matching to identify known vulnerabilities such as reentrancy, integer overflow, and 

unchecked return values [1], [2], [3]. However, their reliance on predefined rules restricts their ability to detect 

newer or more complex vulnerabilities. 

To overcome the limitations of traditional tools, machine learning (ML) techniques have been applied. Liu et 

al. [4] introduced deep neural networks to classify smart contracts based on vulnerability features. Tereshchenko 

and Komleva [5] proposed an attention-based model using CodeBERT to capture semantic and syntactic 

features, achieving higher detection rates. 

Recent works have advanced beyond simple classifiers. Khodadadi and Tahmoresnezhad [6] proposed a hybrid 

multimodal model that merges token embeddings and control flow graphs using FastText and BiGRU, yielding 

strong results on datasets like ScrawlD. Mi et al. [7] introduced a metric-learning approach that uses low-level 

bytecode representations with neural embeddings to detect subtle security issues. Transformer models have 

emerged as promising tools. CodeBERT, GraphCodeBERT, and fine-tuned versions of GPT and LLaMA have 

shown success in vulnerability detection, summarization, and audit explainability [8], [9]. Yu [10] introduced a 

Retrieval-Augmented Generation (RAG) system that enhances accuracy using vector search and large language 

models. Wei et al. [11] proposed LLM-SmartAudit, a multi-agent GPT-based system simulating human audit 

behavior. In terms of surveys, De Baets et al. [12] reviewed over 80 papers and categorized them into static, 

dynamic, and hybrid approaches, emphasizing the growing relevance of graph neural networks (GNNs) and 

transformers. Ozdag [13] discussed key issues in datasets, such as limited size and inconsistent labeling, and 

stressed the need for explainable AI (XAI). Despite advances, challenges persist. These include generalization 

across diverse codebases, absence of consistent benchmarks, annotation difficulties, and limited integration of 

AI into real-world blockchain environments [14]. Our study builds on these reviews and contributes by outlining 

the most influential methodologies and identifying the prevailing trends in scalability, explainability, and real-

world applicability. 

METHODOLOGIES  

AI-powered smart contract analysis has evolved across several distinct paradigms. Based on our literature 

review, these approaches can be broadly categorized into four methodological groups:  

1. Rule-Based and Static Analysis Enhanced by AI  

2. Supervised Learning with Code Embeddings  

3. Transformer-Based Language Models  

4. Hybrid and Multi-Modal Architectures  

Each of these categories reflects a specific way of integrating AI and/or NLP into smart contract auditing 

workflows. Below, we explore each class in detail.  

Rule-Based and Static Analysis Enhanced by AI  

Traditional static analyzers such as Slither, Mythril, and Oyente operate on symbolic execution and heuristic 

rules. Recent studies have attempted to enhance these with AI components that can rank results, reduce false 

positives, or suggest fixes.  

For example, Vulpedia abstracts patterns from known vulnerabilities and uses these to construct AI-generated 

vulnerability signatures. These rule-based approaches remain interpretable but lack generalizability, particularly 

for zeroday vulnerabilities or unconventional coding patterns.  

Supervised Learning with Code Embeddings  

Supervised models typically require labeled datasets where smart contracts are tagged with specific 

vulnerabilities. These models, like Bi-LSTM, CNNs, or GRUs, rely on embedding techniques such as FastText, 

word2vec, or Doc2Vec to convert source code into numerical vectors.  
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Khodadadi & Tahmoresnezhad developed a BiGRU classifier using tokenized source code, achieving high recall 

but limited interpretability. Models trained this way perform well on known datasets but struggle with new or 

adversarial examples due to data bias.  

Transformer-Based Language Models  

Recent progress in NLP has inspired the application of transformer-based models like CodeBERT, GPT-3/4, 

LLaMA, and GraphCodeBERT. These models treat code as a form of natural language, allowing them to learn 

syntax and semantics simultaneously.  

Yu (2024) proposed a Retrieval-Augmented Generation (RAG) model where relevant code contexts are retrieved 

using vector similarity before being analysed by GPT-4. This hybrid greatly improves explainability and 

performance, particularly in ambiguous or lengthy contracts.  

Another notable example, LLM-SmartAudit, coordinates multiple LLM agents in a cooperative setting—

mimicking how multiple auditors might review the same code.  

Hybrid and Multi-Modal Architectures  

These models integrate various representations of code, such as ASTs (Abstract Syntax Trees), CFGs (Control 

Flow Graphs), and bytecode along with source-level text. For instance, Mi et al. used a metric-learning model 

that combines both symbolic and neural features. Others leverage GNNs and CNNs over CFGs and call graphs 

to capture deep structural patterns.  

Hybrid methods are typically more robust and can balance performance with interpretability but require complex 

architecture and high computational resources.  

Proposed Conceptual Framework 

To unify the strengths of existing approaches, we propose a conceptual layered framework for AI-powered smart 

contract auditing and to combine the strongest features of current methods and prevent their weaknesses, we 

suggest modular and layered AI-enabled smart contract auditing architecture. The conceptual framework to be 

envisioned is meant to be extensible across various analysis engines, future-proof against emerging AI 

developments, and deployable and understandable in reality. The architecture consists of four main layers:  

Preprocessing Layer 

This bottom layer is responsible for pre-processing the smart contract code for analysis. It is composed of a 

number of extraction and transformation steps: 

1. Source Code Retrieval: Source code written in Solidity or Vyper is retrieved from repositories or 

blockchain explorers. 

2. Bytecode Extraction: In deployed contracts, Ethereum Virtual Machine (EVM) bytecode is extracted to 

enable lower-level analysis. 

3. Abstract Syntax Tree (AST) Generation: ASTs describe the program syntax in a hierarchical, tree-like 

structure important for syntactic feature extraction. 

4. Control Flow Graph (CFG) Construction: CFGs are the representation of execution flow through the 

contract to help comprehend logic paths and attack surfaces. 

Such dense representations support reasoning from many viewpoints and structure data for symbolic and neural 

processing. 

Analytical Framework 

This layer performs the basic computational operations on the representations generated in the preprocessing 

stage. It possesses a hybrid analytical approach that combines both traditional symbolic techniques and AI  
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models: 

1. Symbolic Analysis Tools (e.g., Mythril, Slither): Perform rule-based detection of known patterns such 

as reentrancy or integer overflows. 

2. Transformer-Based Language Models (e.g., CodeBERT, GPT): Operate on source code and bytecode 

embeddings to capture both syntax and semantics. These models are fine-tuned on security-specific tasks 

such as vulnerability classification, code summarization, and anomaly detection. 

By fusing symbolic and neural techniques, the analysis layer provides an enhanced and more precise detection 

capability, such as the capability to detect zero-day vulnerabilities. 

Reasoning Layer 

The reasoning layer integrates higher-order logic and improves interpretability across the auditing process by: 

1. LLM Coordination: Several instances of large language models (LLMs) mimic collaborative auditing 

through cross-verifying outputs, posing recall questions, and task prioritization. 

2. Multi-Agent Decision Making: In line with newer systems like LLM-SmartAudit, this refers to the 

utilization of multiple AI agents (e.g., variants of GPT) to provide disparate perspectives of a given code. 

3. Severity Scoring and Risk Ranking: Threats identified are placed in perspective based on severity, 

impacted functions, and execution paths utilized. A confidence score is generated to assist auditors with 

prioritization. 

This reasoning process simulates the process of consideration performed by human security specialists, thus 

adding both precision and explainability. 

Reporting Layer 

The last layer converts the technical output into human-interpretable interpretations and artifacts beneficial to 

developers and auditors: 

1. Detailed Vulnerability Reports: Every vulnerability has a description in natural language, line references, 

impacted variables, and probable effect. 

2. Severity Scores and Remediation Recommendations: From standard vulnerability taxonomies, i.e., the 

SWC Registry, the system calculates severity scores and recommends possible code changes. 

This layer ensures that the framework is not only analytically robust but also practical for real-world adoption—

bridging the gap between automated detection and developer action. 

Fig. 2. Proposed Conceptual Framework for AI-Powered Smart Contract Auditing 
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Challenges And Open Issues  

Despite the significant progress in applying AI and NLP techniques to smart contract analysis, several challenges 

remain unresolved. These challenges span across data availability, model generalization, explainability, and 

realworld integration.  

Limited and Imbalanced Datasets  

The development of strong AI models is dependent on the availability of large-scale, diverse, and annotated 

datasets. Unfortunately, the publicly available datasets on smart contracts have several limitations: 

1. Small Size: Datasets such as ScrawlD and SmartBugs have at most a few thousand examples, which is 

too small to train contemporary deep learning models without overfitting. 

2. Bias Towards Common Vulnerabilities: Vulnerabilities such as reentrancy and integer overflow are over-

represented; on the other hand, access control, denial-of-service, or logical flaws are much under-

represented. 

3. Synthetic vs. Actual-World Data: Most datasets are either created synthetically or restricted to scholarly 

examples; therefore, they fail to reflect the complexity or coding patterns that occur in production DeFi 

contracts. 

4. Inadequate Labeling Practices: Some datasets use binary labels for whole contracts, while others use 

vulnerability labels at the function or line level. This makes model transferability and benchmarking 

across studies challenging. 

Generalization to Novel or Obfuscated Vulnerabilities  

One of the main shortcomings of today's AI models is that they cannot handle zero-day exploits or hidden code. 

This is because: 

• Pattern Overfitting: Supervised learning algorithms tend to memorize established patterns instead of 

acquiring general rules of vulnerability. 

• Adversarial Robustness: Small syntax, variable name, or order of logic manipulations can deceive token-

based or embedding-based models. 

• Limited Semantic Understanding: Token embeddings and sequence models learn surface patterns instead 

of more abstract semantic understanding of contract logic and financial flow. 

• This is calling for models that are able to reason about semantics and intent, and not simply syntax—

maybe employing symbolic reasoning, logic programming, or hybrid models. 

Integration with Real-World Development Pipelines 

In spite of favorable research outcomes, there are limited AI-based audit tools incorporated into the development 

and auditing process of blockchain developers. The primary challenges are: 

1. Lack of IDE Integration: Models are rarely deployed as plug-ins for tools like Remix, Visual Studio 

Code, or Hardhat. 

 

2. Incompatibility with CI/CD Pipelines: Smart contract repositories often use continuous integration (CI) 

pipelines, but research models are not packaged for automation or dockerized deployment. 

3. Security Auditing Lag: In practice, auditing is often performed manually after contract completion. 

Embedding AI tools into the write-compile-test-deploy lifecycle remains an open engineering challenge. 

Evaluation Standards and Metrics  

The testing of AI models to review smart contracts is non-standard and normally has substandard reporting 

quality: 

1. Evaluation Misalignment: The majority of the evaluations fail to even test models on actual-world DeFi  
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contracts, failing to check robustness in actual blockchain environments. 

2. Unreliable Experimental Settings: Different papers employ different training splits, datasets, and label 

types and therefore the comparisons are not fair. 

3. Future research will use more rigorous and consensually determined criteria, possibly borrowing from 

the SWC Registry, Ethereum Bug Database, or specialized audit competitions. 

Lack of Explainability  

Explainability is an especially important, but under-researched, aspect of AI-powered auditing tools. Deep 

models are black boxes, and this poses numerous challenges: 

1. Legal and Regulatory Transparency: Developers should justify their security decisions in business or 

legal terms. Flagging a vulnerability is not enough. 

2. Human-AI Collaboration: Developers and auditors benefit from actionable information, such as 

identification of risky lines, impacted variables, or semantic triggers. 

Computational Efficiency and Resource Constraints 

AI models used in auditing often require high computational power, which limits real-time and scalable 

deployment. This section highlights the need for lightweight, efficient alternatives to enable broader adoption. 

1. High Resource Intensity: Models like GPT or CodeBERT require high GPU/TPU resources for training 

as well as inference that may not be available for small teams. 

2. Latency Concerns: Real-time smart contract editing or live audit situations are affected by inference time 

latency because of heavyweight models. 

3. Scalability Problems: With increasingly complex smart contracts, processing time and memory 

requirements increase, slowing down and reducing audit efficiency. 

4. Insufficiency of Lightweight Models: Optimized or lightweight models that are specifically designed for 

auditing smart contracts are sparingly available, constraining deployment in resource-constrained 

environments. 

Legal, Ethical, and Regulatory Ambiguities 

Deploying advanced models for contract auditing often demands considerable computing resources. This poses 

barriers to real-time use, especially in constrained or edge environment Such As: 

1. Accountability Gaps: If there is an auditing error or an AI tool error, legal accountability is 

unclear—whether it should be borne by the developer, auditor, or tool owner. 

2. Regulatory Compliance: The vast majority of AI models lack the transparency to accomplish 

financial or legal audit mandates for justification and traceability. 

3. Data Privacy Issues: Accessing cloud-hosted AI tools for auditing risks compromising 

proprietary smart contract logic, creating intellectual property and confidentiality concerns. 

4. Bias and Equity: Training sets that are skewed towards particular kinds of vulnerability can lead 

to uneven or misleading audit results from models. 

Future Directions  

To advance AI-driven smart contract analysis, future research needs to concentrate on developing robust, 

explainable, as well as flexible systems that can tackle a wide range of realworld issues. The following are 

necessary avenues for innovation:  

Varied and Standardized Benchmark Datasets  

A significant leap forward involves creating thorough, standardized datasets that represent the real-world 

environment of smart contract ecosystems. Datasets should contain a broad variety of vulnerability types, coding 

patterns, and obfuscation techniques, as well as manually verified by security experts annotations. By enabling 
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community efforts, backed by academia and industry partners, one can encourage the development of open and 

reproducible benchmarking datasets enabling unbiased comparisons of AI-based tools.  

Scaling Up Generalization using Transfer Learning  

 Future work should apply transfer learning and domain adaptation methods to enhance model performance on 

different smart contract platforms and programming languages. Fine-tuning models like CodeBERT and LLaMA 

pre-trained on blockchain codebases can possibly allow them to understand the semantics of Solidity or Vyper 

more effectively. In addition, meta-learning methods can facilitate quicker adaptation to new vulnerabilities.  

 Developing Explainable AI (XAI) Mechanisms  

 As AI takes on a more prominent role in security-critical tasks, explainability is critical. Explainable AI (XAI) 

techniques domain-specific, e.g., providing explanations for vulnerabilities, identifying risky code snippets, or 

offering counterfactual explanations, will need to be designed by researchers. Such transparency builds trust and 

allows for human-AI collaboration in auditing tasks.  

Effective Models for Real-World Deployment  

Scalability demands lean but resilient solutions. Future models will need to maximize computational efficiency 

via methods such as neural architecture pruning, knowledge distillation, or edge-friendly architectures. This 

would render them integratable within resource-constrained settings, for instance, IDEs, compilers, or 

blockchain nodes.  

Integration with Development and Auditing Workflows  

AI auditing tools should align with existing development ecosystems. Potential implementations include IDE 

plugins, CI/CD pipeline bots (e.g., GitHub Actions), and API-based vulnerability assessment services. Close 

collaboration with industry auditors will ensure these tools meet practical standards and usability requirements.  

Blockchain Security through Federated Learning 

Federated learning thus offers a promising path for collaborative model training of intelligent contract 

vulnerability models in decentralized environments without compromising sensitive code data centralization. 

Blockchain auditors or nodes can train local models and share contributions with a global model to enhance 

detection rates without compromising privacy and code confidentiality. Architectures and communication 

protocols appropriate for federated learning in distributed blockchain environments should be explored through 

future studies. 

Cross-Platform Vulnerability Benchmarking  

Considering the increasing heterogeneity of blockchain platforms such as Ethereum, Binance Smart Chain, and 

Solana, there exists an immediate necessity to develop cross-platform benchmarking tools and datasets. The 

future effort should focus on building universal metrics and platform-agnostic representations to evaluate the 

security posture of smart contracts in heterogeneous settings. These advancements will allow for uniform 

evaluation and support models more generalizable. 

DISCUSSION 

The integration of Artificial Intelligence in auditing smart contracts is a paradigm shift towards greater security 

and autonomy in the blockchain domain. The results of the research survey show a definite shift—away from 

traditional rule-based systems towards progressively smarter and more flexible models driven by deep learning 

and transformer architecture. 

Among the prevailing themes that emerge from the literature is the trade-off between performance and 

interpretability. While deep neural networks and large language models such as CodeBERT, LLaMA, and GPT 
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models show impressive performance gains in vulnerability detection, their lack of transparency restricts 

explainability. For applications such as smart contract security where legal traceability and auditability are 

critical, a lack of explainability can preclude real-world usage. 

Another significant trend that has emerged is the unification of hybrid and multi-modal systems, which combine 

the traditional symbolic features, like Abstract Syntax Graphs (ASTs) and Control Flow Graphs (CFGs), with 

neural features. These systems normally perform more effectively with different types of vulnerabilities and 

obfuscation methods; with increased computational expense and resource usage, however, hybrids prove to be 

a problem when used in real-time applications or in light-weight development environments. 

The same constraints are applicable to datasets as well, the majority of models have depended on artificially 

created datasets, or narrowly founded datasets that fail to capture the details and the complexity of actual world 

smart contracts. This translates to other constraints in regards to common sense parameters without capturing 

meaningful overview generalization of models and raising overfitting issues. Limited common based 

assessments and viable benchmarks that can measure different measures of evaluation in other research creates 

this even larger challenge. The recent emphasis on explainability and embedding workflows in research that 

followed indicates a natural tendency towards proving potential for plausible adoption of AI based approaches 

in the real world, there's still implementation gap in evidence, for example, many proofs of concept so far but 

no integrations into IDE or IDE runs in continuous integration pipelines as auditing tool chains. The challenge 

will be in transitioning from proof of concept, to value add or pay off for actually utilized AI based solutions in 

regard to smart contract security, and realizing the full break-through of AI potential beyond theoretical break-

throughs. 

Another area drawing increasing attention is the use of multi-agent LLM systems for collaborative auditing. By 

distributing the audit process across several specialized AI agents—each trained for a different vulnerability 

type or contract pattern—researchers aim to simulate the layered decision-making process of human auditors. 

This not only boosts detection robustness but also introduces redundancy for error correction. However, 

coordination between agents, communication overhead, and conflict resolution strategies remain open 

challenges. Moreover, the concept of adaptive learning, where auditing models continuously improve through 

user feedback or evolving code trends, is still in its infancy. While such systems provide immense potential for 

the development of self-refreshing security infrastructures, they also bring in substantial and serious threats, 

including threats of data poisoning, audit drift, and malicious input tampering. Aside from these issues, it is also 

fascinating to observe that much of the software that has been discussed and referenced in current literature is 

open-source or non-reproducible. This inherent quality significantly makes it much harder for the wider research 

community to extend, validate, or perform experimental comparisons of these software solutions.  

Moreover, when we are heading towards an age where smart contract audit tools are in the process of being 

approved by regulations, it becomes essential for developers to actively deal with a variety of socio-technical 

issues. These issues include serious concerns like user trust, legal liability of false positives and false negatives, 

and presence of training bias, which can inadvertently lead to harm to some contract authors. While such socio-

technical issues are normally under-emphasized, they are actually critical to the successful development of 

auditing ecosystems that are not only trustworthy but even inclusive and legal compliant. 

CONCLUSION  

The increasing reliance on smart contracts in different blockchain implementations highlights the importance of 

scalable, smart, and secure audit mechanisms. While rulebased analytical systems are beneficial, they cannot 

recognize sophisticated or yet unrecognized vulnerabilities. Therefore, the application of Artificial 

Intelligence—Natural Language Processing and deep learning, in particular—has emerged as a promising path 

towards improving the dependability and security of smart contracts.  

This paper has provided a comprehensive overview of artificial intelligence-based methods for analyzing smart 

contracts. We have categorized the dominant methods into four broad categories: AI-supported rule-based 

methods, supervised code embedding-based models, transformer language models, and hybrid multi-modal 

frameworks. A comparative analysis was provided to describe the intrinsic strengths and weaknesses of each 
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method. We have also elaborated on a conceptual layer model, with the vision of integrating the analytical 

benefit of these diverse methods.  

While significant progress has been made, there remain several major challenges to the discipline. These 

challenges include limited access to high-quality datasets, models prone to generalization failures, limited 

interpretability, challenges in collaboration with present development toolchains, and inefficiencies in 

computations. Breaking these barriers is crucial for successfully transferring theoretical work to practical use. 

In the future, some of the areas that we have considered for future research are building standardized 

benchmarks, transfer learning, explainable AI innovation, and the deployment of light models in edge settings. 

If these areas are targeted, future research can facilitate more robust, efficient, and adaptive smart contract 

analysis tools, ultimately making the blockchain ecosystem more resilient and secure. Apart from that, with the 

advancing blockchain environment, the need for proactive and automated security will continue to increase. The 

move towards decentralized finance (DeFi), NFTs, and business blockchain applications is driving smart 

contract sophistication that's out of the reach of traditional tools. AI-powered solutions bring with them not only 

scalability but the ability to keep pace with new attack vectors, making them a necessity for next-gen auditing. 
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