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ABSTRACT  

The intersection of Edge Artificial Intelligence (Edge AI) and the Internet of Things (IoT) has transformed 

precision agriculture, especially in the application of real-time crop disease detection. This survey investigates 

the most important technologies, architectures, and AI models that facilitate the on-field detection of crop 

anomalies through edge devices and smart sensors. To continue, click here. We categorize and summarize recent 

work into four main categories: edge-enabled sensing and processing frameworks, lean deep learning models 

for resource-limited devices, data-driven methods such as augmentation and incremental learning, and 

communication protocols appropriate for agricultural settings. The use of CNN architectures such as Mobile Net 

and Efficient Net, and methods such as pruning and quantization, have made effective disease detection possible 

on hardware such as Raspberry Pi and Jetson Nano. Nonetheless, significant challenges continue to exist in 

scalability, energy efficiency, data sparsity, model generalization, and secure communication. We end with 

directions for future research involving multi-modal sensor fusion, federated learning, and adaptive AI systems 

for improvements in robustness and scalability in real-world agricultural settings.  
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INTRODUCTION  

Agriculture is a determinant factor in global food security, economic growth, and rural livelihood, particularly 

in low- and middle-income nations. As the world population continues to rise and is estimated to be 9.7 billion 

by 2050, there is mounting pressure on agricultural systems to be more productive and minimize losses [1]. 

Among the most important causes of crop loss is the epidemic of plant diseases that can greatly lower yield and 

quality. It is estimated that plant diseases account for about 20–40% of crop production loss around the world 

every year [2]. For this reason, early and precise detection of plant disease is imperative to reducing these losses 

and maintaining sustainable agricultural production. 

Conventional methods of disease detection—like field observation by hand, laboratory analysis, and distant 

specialist advice—tend to be time-consuming, expensive, and susceptible to human error. These drawbacks limit 

extensive monitoring, particularly in rural or far-off agricultural areas with restricted access to specialist 

agronomists or laboratory facilities. In addition, visible signs of plant illness usually become manifest only after 

significant internal damage has been done, and thus reactive measures are less successful [3]. 

Current innovations in Artificial Intelligence (AI), the Internet of Things (IoT), and Edge Computing provide 

new opportunities for creating smart systems that can monitor plant diseases in the field in real time. IoT-based 

networks can continuously track environmental and plant parameters via sensors (e.g., leaf moisture, 

temperature, humidity, spectral imaging), whereas Edge AI permits direct deployment of machine learning 

models on low-power embedded devices such as Raspberry Pi, Jetson Nano, ESP32-CAM, and Coral Edge TPU 

[4], [5]. The interplay between the two facilitates near-instant decision-making, reduces dependence on internet 

connectivity, and maintains data privacy through local processing of sensitive agricultural data [6]. 
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In contrast to cloud-based approaches, edge computing enables the system to compute near the source of data—

inline in the field—minimizing latency and bandwidth usage. Edge AI algorithms can infer disease symptoms 

from images of leaves, detect anomalies in sensor data, and even initiate automated irrigation or pesticide 

systems. Lightweight Convolutional Neural Networks (CNNs) like MobileNet, EfficientNet, and SqueezeNet, 

with optimization using methods like model pruning, quantization, and depthwise separable convolutions, are 

able to keep their high accuracy on devices with limited resources [7], [8], [9]. 

Several architectures have been proposed in recent years to combine AI with IoT for crop disease detection. For 

example, the CROPCARE system performs on-device inference for disease detection using a camera-equipped 

Jetson Nano, achieving real-time diagnosis with minimal power usage [10]. Other systems have utilized thermal 

imaging, hyperspectral cameras, and even drone-mounted sensors integrated with edge computing hardware to 

monitor large farmlands autonomously [11]. 

Even with promising developments, a number of technical as well as practical issues still restrict the scalability 

and field-level application of such systems. First, the ability of deep learning models trained on a single crop or 

location to generalize to new environmental contexts or novel disease types is poor. Annotated agricultural 

datasets availability is also one of the foremost limitations, where most datasets are imbalanced, small, and of 

non-diverse stages of disease progression and lighting conditions [12]. Moreover, real-time on-edge performance 

also requires attention to appropriate trade-offs between model complexity, speed of inference, and power 

consumption [13]. 

Another burning concern is trustworthy and efficient communication in rural fields for agriculture. 

Communication protocols such as LoRaWAN, ZigBee, and NB-IoT provide low-power and long-range solutions 

but come with data rate and latency trade-offs. Multimodal sensor data integration (e.g., RGB, thermal, humidity, 

soil pH) also poses issues in sensor calibration, synchronization, and fusion schemes [14], [15]. Additionally, 

privacy and security of data are still important concerns, particularly in decentralized architectures where edge 

devices can be physically vulnerable or don't have secure storage and encryption mechanisms [16]. 

To fill these voids, this survey gives an extensive review of the literature between 2020 and 2025 on Edge AI 

and IoT technologies for crop disease detection. The contributions of this survey are as follows: 

1. Taxonomic categorization of current Edge AI–IoT frameworks according to system architecture, device 

category, communication protocol, and AI model employed. 

2. In-depth comparison of deep learning models used on edge devices, such as their performance, 

optimization methods, and hardware support. 

3. Discussion of data-related methods like synthetic data generation, augmentation techniques, and lifelong 

learning to counter data sparsity. 

4. Analysis of communication protocols and sensor fusion techniques applied for real-time monitoring and 

control in smart agriculture. 

5. Detection of open research challenges and directions, including federated learning, explainable AI, and 

cross-crop generalization. 

The rest of the paper follows the organization: Section II is a review of relevant literature organized by system 

type and function. Section III describes the essential methodologies employed in existing implementations. 

Section IV enumerates the main challenges and open research issues. Section V presents future directions for 

research. Section VI presents a general discussion, and Section VII concludes the survey.  

LITERATURE REVIEW  

In the last five years (2020–2025), huge research has been seen at the Edge AI-IoT convergence to meet the 

increasing demand for real-time and low-resource crop disease identification systems. This section classifies the 

literature into four primary categories: (1) IoT-Edge system architectures, (2) edge-deployment friendly 
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lightweight deep learning models, (3) data-centric learning methods, and (4) communication protocols and 

sensor integration. 

IoT-Edge Based System Architectures 

The integration of edge computing hardware and IoT sensors provides the localized intelligence needed for 

agricultural decision-making. Such systems consist of wireless communication modules for transmitting data, 

edge AI hardware for processing, and sensing modules (e.g., cameras, temperature, humidity sensors). 

Garg et al. [1] created CROPCARE, a real-time disease detection framework for crops with a Jetson Nano board, 

RGB camera, and Wi-Fi-based data transmission. The system showed the capability of real-time inferencing on 

the field itself with minimal dependence on cloud connectivity. 

Rumly et al. [2] proposed a low-cost LoRa WAN-based rice disease detection system that uses a Raspberry Pi 

and multispectral sensors. Their architecture supported early disease detection while optimizing energy and 

bandwidth usage in remote field conditions. 

Proietti et al. [3] introduced a greenhouse-based system based on Raspberry Pi incorporating temperature and 

humidity sensors with a CNN-based disease detection for tomato plants. The system emphasized reducing 

latency and less data offloading needs. 

Hayajneh et al. [4] proposed a Tiny ML-based UAV framework that implemented edge AI models on drones for 

airborne crop monitoring. The framework utilized onboard computation to predict disease with transfer-learned 

models and offloaded results via 4G or edge gateways. 

These works highlight the transition from cloud-based designs to decentralized, autonomous edge systems 

appropriate for harsh and connectivity-limited agricultural settings. 

Lightweight Deep Learning Models for Edge Deployment 

Scaling deep learning to edge devices means models need to be light, energy-efficient, and speedy, but with 

minimal loss of accuracy. Several methods like model compression, pruning, quantization, and architectural 

optimization have been used to make this possible. 

Zhang et al. [5] used a depth wise separable CNN to classify crop diseases and ran it on a Raspberry Pi. The 

model had 92% accuracy with less than 500ms inference time, with excellent suitability for edge applications. 

Wicaksono and Apriono [6] proposed a CNN-based plant disease classifier on FPGA-based edge hardware, while 

maintaining high speed and low power consumption. The work is remarkable for taking advantage of edge 

inference with hardware acceleration. 

Lv et al. [7] compared Efficient Net and MobileNetV3 for the detection of peanut leaf disease and deployment 

optimization on Jetson Nano and Coral TPU. The research indicated that MobileNetV3 offered the best trade-

off in terms of accuracy and latency for in-field diagnosis. 

Da Silva and Almeida [8] showed the viability of employing thermal vision for disease diagnosis on edge 

devices. Tests with Raspberry Pi and Coral TPU exhibited enhanced robustness with changes in illumination. 

In an innovative hybrid model, Plant XViT [9] blended Vision Transformer (ViT) and CNN layers for 

interpretable plant disease diagnosis. Though computationally more expensive, it exhibited enhanced 

generalization and interpretability. 

These advances also represent a trend toward ultra-efficient models that are purposely designed to satisfy real-

world energy, compute, and robustness requirements. 
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 Data Augmentation and Adaptive Learning Methods 

One of the biggest challenges in using AI for agriculture is having access to large, balanced data sets. Several 

data-centric methods have been tried to address this challenge. 

Cap et al. introduced Leaf GAN, a GAN-based approach to generate synthetic diseased leaf images [10]. 

Incorporating GAN-augmented data greatly enhanced the stability of CNNs under imbalanced classes. 

Gurunathan et al. [11] employed EfficientNet-B0 along with transfer learning on a small cassava leaf dataset. 

Their model reached 94% accuracy using a mere 2,000 labeled samples, demonstrating the utility of pretrained 

models in the agricultural context. 

Santos et al. [12] designed a continuous learning paradigm that enables edge models to incrementally learn from 

field observations. The system employed Elastic Weight Consolidation (EWC) to preserve past knowledge, thus 

facilitating learning in change-prone agricultural environments. 

Adaptive methods like semi-supervised learning, few-shot learning, and federated learning are increasingly 

making waves, but they have not yet been fully implemented on edge hardware owing to resource and 

communication limitations. 

Sensor Integration and Communication Protocols 

Effective communication is necessary for real-time data transfer between gateways, edge nodes, and sensors. 

Research has investigated a number of wireless technologies, which are specially designed for smart agriculture. 

Matilla et al. [13] employed LoRa WAN in an IoT-based irrigation system, which provides wide-area coverage 

with low energy usage. Their findings are especially appropriate for field environments with limited cellular 

coverage. 

Bai et al. [14] proposed a delay-aware offloading algorithm for UAV-Edge-Cloud systems. Their algorithm 

optimizes decision latency and task scheduling on nodes and thus is well applicable to aerial and ground system 

scenarios. 

Das and Luo [15] designed Light ESD, an edge-based anomaly detector with multimodal input (e.g., humidity, 

light intensity, soil pH). Their system employed sensor fusion to enhance detection reliability and minimize false 

alarms. 

Da Silva et al. [8] illustrated thermal + RGB fusion in disease diagnosis, which evidenced multimodal sensing 

enhances accuracy in situations where one of the modalities is poor (e.g., light overexposure or darkness). 

The majority of the systems surveyed are based on wireless protocols such as ZigBee, NB-IoT, and Wi-Fi, 

sometimes supported by solar or battery-powered nodes to increase usage time in the field. 

Table 1: Key Studies on Edge AI and IoT for Crop Disease Detection 

Reference Focus Key Contribution 

[1] Edge inference system Real-time detection on Jetson Nano 

[2] IoT + LoRaWAN Early detection in remote farms 

[3] Greenhouse system CNN-based tomato disease detection 

[4] UAV + TinyML Aerial monitoring with onboard inference 

[5] Lightweight CNN 92% accuracy, <500ms latency on Raspberry Pi 
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[7] Model comparison MobileNetV3 best for speed and accuracy 

[9] Data augmentation (GAN) LeafGAN improves performance on rare classes 

[11] Transfer learning EfficientNet on cassava, 94% accuracy 

[12] Continual learning EWC for dynamic learning in the field 

[13] Sensor communication LoRaWAN for wide-area, low-power setup 

SUMMARY OF LITERATURE REVIEW 

The literature surveyed demonstrates a clear path towards efficient, practical, and smart real-time crop disease 

detection through Edge AI and IoT. System designs have moved towards decentralization and autonomy, and 

optimally adopted models with miniaturized hardware. Yet, gaps remain in dataset access, cross-crop model 

generalizability, multimodal data integration, and secure, scalable deployment procedures. These findings are 

the basis for our subsequent analysis of methodologies and open issues in the next sections. 

METHODOLOGIES  

Design and development of real-time crop disease identification systems based on Edge AI and IoT comprise an 

array of connected building blocks from hardware design and model development to data preprocessing and 

communication protocols. Within this section, we group and detail methodologies into the following five 

functional dimensions: system design, model development, data strategies, deployment optimization, and 

communication/sensor fusion. Collectively, these layers form the building blocks of contemporary precision 

agriculture with smart edge systems. 

 

Fig. 1. Functional blocks involved in real-time crop disease identification using Edge AI and IoT, including 

system design, model development, data handling, optimization, and sensor fusion. 

Edge-IoT System Design 

The general system design of Edge AI–based crop monitoring systems comprises three layers: 

1. Data Acquisition Layer (Perception): Comprises RGB, hyperspectral, or thermal cameras for image 

capturing; as well as humidity, temperature, pH, moisture, and light intensity sensors. 
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2. Edge Intelligence Layer: Runs pre-trained and optimized AI models on embedded platforms such as 

Jetson Nano, Coral TPU, or Raspberry Pi for real-time processing and decision-making. 

3. Communication Layer (Network): Facilitates the accurate transfer of data between edge devices, 

gateways, and/or cloud systems using LoRa, ZigBee, NB-IoT, or Wi-Fi protocols. 

CROPCARE [1], for example, combines an RGB camera, Jetson Nano edge device, and Wi-Fi for in situ real-

time leaf disease detection and alert dissemination. It does inference in real-time in the field to prevent latency 

due to cloud reliance. 

Rumly et al. [2] created an energy-efficient solution based on Raspberry Pi and LoRaWAN, suitable for farms 

with low connectivity. The solution was able to achieve early rice disease detection in remote agricultural areas, 

showing applicability for resource-poor regions. 

In contrast, Hayajneh et al. [4] introduced a UAV-based TinyML system, fusing aerial data collection with local 

ML inference onboard for widespread farmland coverage. This exemplifies the ability to combine mobile edge 

computing with agriculture. 

This decentralization—local processing instead of cloud—lowers latency considerably, improves scalability, and 

maintains data privacy, all essential in farm deployments in rural areas. 

Lightweight Model Development 

Edge AI models are usually bounded by small memory, computation, and battery life. To be efficient, researchers 

apply techniques of architectural and optimization to minimize computational complexity with retained 

performance. 

 Depthwise Separable Convolutions (e.g., MobileNet) lower the number of parameters and computation 

by decomposing convolutions [3]. 

 Model Pruning removes less significant weights and neurons, leading to sparse and reduced models with 

little performance degradation [4]. 

 Quantization diminishes numerical accuracy (e.g., from 32-bit to 8-bit integers), making the models 

smaller and quicker, usually TensorFlow Lite or ONNX Runtime compatible [5]. 

 Neural Architecture Search (NAS) finds the best model architectures that optimize accuracy relative to 

hardware efficiency [6]. 

For instance, Zhang et al. [3] showed that a depthwise CNN could classify leaf diseases with more than 90% 

accuracy and <500 ms latency on a Raspberry Pi. This indicates that accuracy is preserved even at the expense 

of small models. 

Wicaksono and Apriono [8] executed a tailored CNN model on an FPGA-edge system. The model was 98% 

accurate with very low power consumption and sub-second latency—emphasizing the role of hardware-aware 

design. 

Furthermore, Lv et al. [11] contrasted EfficientNet-B0, MobileNetV3, and SqueezeNet on peanut leaf 

classification. The trade-offs indicated MobileNetV3 produced the optimal inference time (80 ms) and power 

efficiency while having >91% accuracy. 

Data Handling and Augmentation Techniques 

Agri-datasets tend to be small, noisy, and imbalanced with poor disease variety or environmental variety. This is 

a hindrance for generalization across regions or seasons. For this purpose, a few data-driven AI techniques are 

employed: 
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a) Conventional Augmentation : 

Mimics geometric (rotation, flip), photometric (brightness, contrast), and additive noise methods for enhancing 

model immunity to true-world conditions. 

b) Synthetic Data using GANs : 

LeafGAN [9] produces high-quality, labeled leaf images that capture rare or under-sampled diseases. This 

addresses class imbalance and enhances model generalization. 

c) Transfer Learning : 

ResNet, InceptionV3, or EfficientNet models are pre-trained on a large-scale dataset (e.g., ImageNet) and then 

fine-tuned using small agricultural datasets. Gurunathan et al. [7] employed EfficientNet-B0 and achieved 94% 

accuracy in cassava leaf diseases with little training data. 

d) Continual Learning : 

Santos et al. [10] used Elastic Weight Consolidation (EWC) for plant disease models to learn incrementally from 

new field data without forgetting past knowledge—a real-world solution for settings with dynamic disease 

patterns. 

e) Meta-learning & Few-shot Learning : 

These methods are yet untapped in agriculture but would enable models to learn to generalize from just a few 

labeled examples per disease category—perfect for emerging or low-frequency diseases. 

Such data-driven approaches greatly improve the field-deployability of AI models, particularly in data-poor, 

high-variance agricultural environments. 

Deployment and Optimization Strategies 

 Edge deployment of AI is more than inference accuracy. Real-world considerations are: 

 Model Conversion & Optimization: Models are converted into forms such as TensorFlow Lite, TensorRT, 

or ONNX to enable hardware acceleration. 

 Hardware Compilation: For microcontrollers (e.g., STM32), cross-compilation is needed using 

toolchains such as Arduino IDE or Edge Impulse. 

 Performance Benchmarking: Compares FPS (frames per second), model size (MB), RAM consumption 

(MB), power consumption (W), and inference latency (ms). 

Lv et al. [11] compared several models and determined MobileNetV3 to be best suited for deployment in the 

field with Jetson Nano and Coral Edge TPU. Da Silva and Almeida [12] used thermal + RGB sensor fusion with 

a quantized CNN model, enhancing accuracy in varying illumination conditions. 

Also, deployment in the real world tends to leverage Docker containers or edge platforms such as EdgeX 

Foundry, AWS Greengrass, or Azure IoT Edge for efficient and manageable rollout of AI pipelines at the field 

level. 

Sensor Fusion and Communication 

Secure and efficient communication is critical to exchange sensor information, model updates, and notify users. 

Based on deployment environment and scale: 

 LoRaWAN is ideal for wide-area, low-power connectivity for distant areas [2], [13]. 

https://rsisinternational.org/journals/ijrias
https://rsisinternational.org/journals/ijrias
http://www.rsisinternational.org/


INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN APPLIED SCIENCE (IJRIAS) 

ISSN No. 2454-6194 | DOI: 10.51584/IJRIAS |Volume X Issue VII July 2025 
 

 
 
 
 

www.rsisinternational.org 
Page 1018 

 
 

  

 

 ZigBee and NB-IoT provide short-range, low-data-rate transmission ideal for greenhouses. 

 Wi-Fi or BLE is used for high-throughput but less power-efficient communication, suitable for limited-

range scenarios. 

Sensor fusion plays a growing role in improving detection accuracy and reducing false alarms. Strategies include: 

 Early Fusion: Combining multiple sensor inputs at the model input layer (e.g., image + temperature). 

 Late Fusion: Independent model predictions from multiple modalities are merged at the decision level. 

 Hybrid Fusion: Merges early-stage and late-stage fusion under one single framework. 

Das and Luo [14] presented LightESD, which employed soil, humidity, and temperature fused data to identify 

environmental anomalies related to plant stress. The model performed better than single-sensor baselines with 

negligible latency. 

Sophisticated sensor integration (e.g., hyperspectral, thermal, acoustic) with edge inferencing promises 

opportunities for multi-dimensional disease diagnosis and context-aware agricultural systems. 

State-of-the-art real-time plant disease detection systems based on Edge AI and IoT platforms integrate effective 

hardware, dynamic software, and strong data approaches. The strategies detailed show that deep learning 

optimization, continual learning, sensor fusion, and communication schemes can make precision agriculture 

scalable and cost-effective. Challenges persist in developing integrated benchmarks, model interpretability, and 

dependable edge deployment across real-world uncertainties—discussed in the next section. 

Challenges and Open Issues  

The convergence of Edge AI and IoT into agricultural infrastructure for real-time detection of crop diseases 

offers disruptive potential, but this shift is still met with multi-dimensional challenges. The challenges include 

technical, environmental, infrastructural, and ethical aspects, which have to be overcome for the large-scale, 

scalable, and efficient implementation. 

Dataset Scarcity and Quality Limitations 

Agricultural AI models significantly depend on large amounts of well-annotated data. The availability of high-

quality and diverse agricultural datasets is still scarce. The majority of public datasets: 

 Only cover a small number of crop species (i.e., tomato, cassava, or maize), 

 Only capture limited disease types and early-stage symptoms, 

 Include images under controlled lighting conditions, which are unrealistic for field deployment. 

For instance, the widely used PlantVillage dataset [1] consists of artificially clean data causing poor real-world 

generalization. Also, annotation is time-consuming and needs domain knowledge from agronomists or plant 

pathologists. This bottleneck diminishes the feasibility of training high-performing and generalizable models. 

Synthetic data augmentation via Generative Adversarial Networks (GANs) [2] or methods such as Few-Shot 

Learning and Self-Supervised Learning provide limited solutions but tend not to include contextual realism in 

created samples. Community-sourced, geo-diverse, and multimodal datasets, including those with RGB, thermal, 

hyperspectral, and contextual environmental data, are needed now. 
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Lack of Cross-Domain and Seasonal Generalization 

Edge AI models tend to overfit to a particular domain, for example, one type of crop or location. Deploying such 

models in a different region causes them to perform far worse because: 

 Crops have a different appearance, 

 Disease expression is varied when exposed to varying climatic and soil conditions, 

 Plant morphology or color changes by season. 

This problem is known as domain shift, and it is a focal issue for real-time disease diagnosis in diverse farm 

settings. Standard transfer learning is beneficial to some degree, but real-time applications require domain-

agnostic or meta-learning methods [3] to learn to adjust dynamically. Furthermore, weather and seasonal change 

also affect leaf color, light exposure, and sensor noise, so seasonal robustness is another open problem. 

Limited Computational Resources at the Edge 

Field-deployed edge devices (e.g., Raspberry Pi, ESP32, Jetson Nano, Arduino) have severe constraints with 

regard to: 

 Low CPU/GPU frequency for computational power, 

 RAM and storage capacity, 

 Availability of battery or solar power, 

 Absence of active cooling in outdoor environments. 

While methods like model pruning, quantization, knowledge distillation, and depthwise separable convolutions 

are applied to reduce the model footprint [4], these tend to have a performance compromise. For instance, it 

might be possible to deploy a MobileNetV2 on a Jetson Nano, but it would still burn a lot of power and may not 

be scalable to multi-sensor processing. 

Custom lightweight architectures are needed, potentially based on neural architecture search (NAS) that is 

energy, latency, and accuracy optimized. Hardware-software co-design for TinyML and edge-AI chips like 

Google Coral TPU and Intel Movidius needs to be pursued further to ensure sustainable deployment. 

Real-Time Processing Constraints and Latency Issues 

Real-time processing is essential for timely disease detection that helps limit crop loss. Yet the latency of the 

system is impacted by: 

 Image capture and pre-processing latency, 

 Model inference latency on edge hardware, 

 Overheads for communication from sensors to gateways/cloud, 

 Power modes for power-saving hardware in remote settings. 

Real-time systems need to provide inference in <1 second, but most deep models need multi-frame averaging or 

large inputs. Optimizing real-time requirements with accurate prediction is a continuing challenge [5]. Pipeline 

parallelism, early exit networks, or approximate computing can potentially provide solutions. 

 

https://rsisinternational.org/journals/ijrias
https://rsisinternational.org/journals/ijrias
http://www.rsisinternational.org/


INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN APPLIED SCIENCE (IJRIAS) 

ISSN No. 2454-6194 | DOI: 10.51584/IJRIAS |Volume X Issue VII July 2025 
 

 
 
 
 

www.rsisinternational.org 
Page 1020 

 
 

  

 

Multi-Sensor Data Fusion Challenges 

Combining various modalities such as temperature, humidity, soil moisture, multispectral images, and 

geolocation can make disease detection more accurate. But combining these heterogeneous data streams brings 

along: 

 Time synchronization challenges, 

 Sensor calibration drift over time, 

 Amplification of noise when modalities disagree, 

 Difficulty in designing multi-modal deep networks [6]. 

Today, all systems are based primarily on visual information, and other agro-climatic indications are not 

considered. Sensor-aware learning paradigms for robust operation even when some modalities are unavailable 

or noisy need to be developed for practical application. 

Power and Energy Efficiency 

Rural deployments tend to use solar panels or batteries, and power availability is the main limitation. Models 

that require large amounts of computational energy do not support long-term deployment. Although energy-

efficient AI models are researched [7], few have been implemented in agricultural environments. 

Periodic data transmission (e.g., using LoRaWAN or ZigBee) and sensor activity also utilize energy. There is a 

trade-off among: 

 Detection frequency (temporal resolution), 

 Power consumption, and 

 Network bandwidth. 

Techniques such as event-driven sensing, dynamic model compression, and edge device sleep-wake cycles can 

enhance the operation life, but such techniques require fine-grained adjustments for each deployment zone. 

Security, Privacy, and Data Integrity 

Agriculture systems are cyber-physical systems now, and they are more exposed to: 

 Sensor tampering or spoofing, 

 Adversarial image attacks for deceiving AI, 

 Unauthorized data access or leakage during cloud backup, 

 Poisoning of on-device learning models. 

Very few systems use secure authentication, lightweight encryption, or tamper-proof logging facilities. Use of 

blockchain for the secure logging of sensor events, and federated learning for privacy-preserving model training 

without moving raw data are unexplored [8]. 

Absence of Standardized Evaluation Metrics and Field Trials  

There are no standard benchmarks presently available for assessing real-time crop disease detection systems. 

Researchers employ: 

https://rsisinternational.org/journals/ijrias
https://rsisinternational.org/journals/ijrias
http://www.rsisinternational.org/


INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN APPLIED SCIENCE (IJRIAS) 

ISSN No. 2454-6194 | DOI: 10.51584/IJRIAS |Volume X Issue VII July 2025 
 

 
 
 
 

www.rsisinternational.org 
Page 1021 

 
 

  

 

 Various datasets (some of which are private), 

 Varied environmental conditions, 

 Measures such as precision, accuracy, and recall, but seldom latency or energy consumption. 

In addition, a majority of the works report lab or test bed results. Real-farm deployment under changing weather, 

lighting, dust, and biological interference are hardly validated. Without this, real-time detection claims are very 

much speculative. 

Open benchmarks like FarmSim environments or multi-site collaborative testbeds can go a long way to mature 

the field. 

System Maintenance and Scalability 

Deploying and managing edge devices in large farms or a number of farms is not trivial. Challenges are: 

 Device failure or overheating, 

 Firmware and model update management, 

 Sensor drift calibration, 

 Remote diagnostics and fix. 

The absence of standardized edge orchestration tools like KubeEdge, Balena, or Azure IoT Edge hinders 

scalability. Studies on autonomous system healing, remote update, and dashboard analytics for farm IoT require 

more focus. 

Socio-Technical and Economic Barriers 

Lastly, even when technical systems operate well, adoption in real-life settings is restricted by: 

 Farmer trust in AI systems, particularly when they make incorrect predictions, 

 Hardware cost for small-scale farmers, 

 Insufficiency of technical literacy to control edge devices, 

 Language and interface barriers. 

Mechanisms must be engineered with human-in-the-loop processes, multiple languages, and visual notifications 

(e.g., LED lights or basic phone messages). Affordability and ease are crucial in adoption. 

Future Directions  

Edge AI and IoT-based solutions will increasingly be pivotal in early and real-time crop disease detection as 

precision agriculture continues to develop. But existing implementations remain emergent, fragmented, and 

mostly confined to pilot initiatives. The following presents primary areas for innovation and development that 

need to be met in order to achieve scalable, sustainable, and farmer-friendly crop monitoring systems. 

Unified AI Frameworks for Multitask Learning 

Existing systems are optimized for single-task detection, commonly for one crop or one disease. In actual 

agricultural environments, there exist concurrent problems—disease detection, pest forecasting, irrigation 
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requirements, and nutritional deficiencies—whose model should be developed. Future work must develop multi-

task deep learning models that are able to: 

 Deal with various plant species and diseases, 

 Concurrently detect weeds, pests, and abiotic stresses, 

 Forecast growth stages and yield under changing conditions. 

Transformers, vision-language models, and graph neural networks (GNNs) might be combined for this role, 

tapping both sensor inputs and expert-curated knowledge graphs [1]. 

Edge-Cloud Collaborative Intelligence 

Instead of being dependent only on the edge or the cloud, next-generation architectures should implement a 

hybrid intelligence paradigm where: 

 Important tasks (e.g., real-time disease detection) are done locally, 

 Computation-intensive activities (e.g., model training or anomaly clustering) are shifted to the cloud, 

 Synchronization between cloud and edge is network availability-optimized. 

This edge-cloud continuum would make dynamic decision-making possible, with systems learning from 

worldwide patterns but adjusting to local farm environments. Dynamic model partitioning and edge caching are 

some of the techniques that will be used for smooth operation [2].  

Real-Time Feedback and Actuation Loops 

Present systems are only able to detect disease but not mitigate it with human intervention. Future systems should 

incorporate closed-loop actuation, for example: 

 Enabling drone or robot pesticide spraying, 

 Automating irrigation or ventilation controls, 

 Issuing disease alarms with site-specific action suggestions. 

By integrating sensor inputs, AI algorithms, and actuators, farms can progress toward autonomous precision 

farming. Actuator integration, for example, IoT-capable sprayers or automated irrigation valves, is the next 

requirement. 

Resilient AI Against Environmental Variability 

Agricultural environments are dynamic and stressful: changing weather, light, and soil conditions can impair 

model performance. Subsequent work should center on: 

 Self-adaptive AI systems that retrain or recalibrate based on feedback, 

 Robust training pipelines with environmental simulations (e.g., brightness jitter, occlusion noise), 

 Models that estimate uncertainty in predictions through Bayesian deep learning or ensembling [3]. 

These advances will make AI systems robust under real-field, varying conditions. 
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Bio-Sensor and Non-Visual Modalities 

Visual data (RGB or hyperspectral images) are mostly all that the research is concerned with. But the diseases 

might not be visible at the early stages. Adding non-visual modalities like: 

 Volatile Organic Compound (VOC) sensors that can sense plant stress based on gas emission, 

 Acoustic sensors to sense insect presence or rustling of leaves, 

 Soil electrochemical sensors for detecting early signs of fungal activity. 

These, combined with vision systems, will allow early, multimodal diagnosis prior to visual symptom appearance 

[4]. 

Synthetic Field Data and AI-Driven Crop Simulation 

 Lack of data is a major bottleneck. Directions for the future must make use of: 

 Digital Twin technology to virtually model farms and crop dynamics under different disease and weather 

conditions, 

 Synthetic dataset creation based on physics-informed GANs and crop growth simulators (e.g., APSIM, 

DSSAT), 

 Virtual training and testing of edge-AI systems using Augmented Reality (AR) and VR platforms. 

These tests will allow for secure testing of AI systems in simulated environments prior to deployment and assist 

in training models in uncommon or high-risk disease situations [5].  

Regional and Cultural Tailoring of Systems 

Farmer adoption and trust are context-dependent at a local level. Next-generation systems should be: 

 Multilingual, with support for regional dialects and languages, 

 Culturally adaptive, aware of the local farming calendar, beliefs, and local practices, 

 Voice-based or visually based, based on farmer choice or literacy levels. 

This will involve user-focused design research, co-creation with agricultural communities, and cooperation with 

local extension services or cooperatives [6]. 

Affordable and Sustainable AI Hardware 

Edge devices should be affordable, energy-efficient, and sustainable. Future research needs to investigate: 

 Recyclable and biodegradable materials for edges, 

 Modular device designs where sensors and AI chips can be individually replaced, 

 Open-hardware projects such as OpenEdgeAI that decrease dependence on proprietary platforms. 

Furthermore, village-maintained device hubs can offer collective AI functionality to smallholder farmers without 

needing a device per farm. 
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Agri-Cybersecurity and Tamper-Resistant Systems 

Agriculture being digitalized, it gets exposed to cyberattacks. Future systems should include: 

 Lightweight intrusion detection systems (IDS) on edge devices, 

 Secure boot protocols and encrypted firmware updates, 

 Decentralized ledgers (e.g., blockchain) to authenticate AI decisions and sensor logs 

 AI for anomaly detection to alert for possible data spoofing or manipulation. 

Policies need to be created around agri-data sovereignty to ensure that farmers own and have control over their 

sensor and crop data [7]. 

Interdisciplinary Cooperation and Policy Facilitation 

Combating agricultural issues calls for cooperation from: 

 AI researchers and agri-scientists, 

 Climate scientists and ecologists, 

 Economists and policy developers. 

Multidisciplinary consortia need to form in future research, developing common standards, open platforms, and 

regulatory rules for: 

 Data sharing and annotation, 

 AI model validation and certification, 

 Technology adoption incentives and subsidies for smallholders. 

Initiatives such as the FAO-ITU E-Agriculture Framework and UN AI for Good need to be harnessed to catalyze 

scalable, impactful innovation [8]. 

DISCUSSION 

The combination of Edge AI and IoT technology in agricultural systems marks a revolutionary leap into smart 

disease detection and real-time crop disease monitoring. As literature surveyed thus far explains, this integration 

could offer a method of plant disease identification that promises to be less manpower consuming and more time 

efficient than conventional methods. Nonetheless, advances in this area are vital but have many observations at 

the critical level against the combined development and limitation of the future directions in the field. 

The trade-off between accuracy of the model and efficiency of the hardware is one of the strongest themes 

prevalent in the reviewed works. On one hand, many deep learning models like CNNs, EfficientNet, and 

MobileNet achieved high-level accuracy in plant disease image classification. On the other hand, they consume 

large computational and memory resources, which makes them less deployable in low-power edge devices, 

which are widely available in rural and resource-limited settings. Researchers have resorted to techniques such 

as in deploying model pruning, quantization, and using lightweight architectures as a counter for this. However, 

such optimizations tend to realize a drop in accuracy, particularly after deployment of models in real-world field 

situations, which differ immensely from where they were trained. 

Dependability and reproducibility of AI models across diverse agricultural environments are another area of 

contention. Although some models show good performance in test sets, they are not guaranteed to work in the 
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real-world outdoor environment, which can include variation in lighting, occlusion, backgrounds, and the 

presence of multiple symptom complexities. The disparity suggests much reliance on evaluation approaches that 

are simulated or laboratory-based and calls for real-world verification. The lack of unified datasets as well as 

evaluation procedures poses a barrier for adequate comparisons to be made between studies and hampers 

reproducibility, which is important for scientific progress and industrial uptake. 

Data importance is echoed when taking into consideration the scant availability of high-quality and large-scale 

annotated datasets reflecting diversity. Most research studies are conducted based on small or artificial data sets 

that do not exhaustively capture the diversity of disease expression across several crop types and geographies, 

and climates. The assumption of generalization will most likely not hold, which creates a disconnect between 

research results and implementation in the real world. Therefore, in that aspect, open, multimodal, world 

representative data sets are critically important for future empowerment from this perspective. 

Another of those aspects is AI, IoT, and system level integration for decision making in real time. Current systems 

are concentrated mainly in the perception layer, for application in disease detection, while they do not have any 

higher-level decision-making and actuation elements. An end-to-end edge-AI pipeline would have to incorporate 

not only detection but also contextual analysis, user input, and interface with farm management systems. 

Integration is needed to go from diagnosis to action-facilitating timely actions such as spraying, irrigation, or 

quarantining infected zones. 

Besides, the socio-economic implications from greater use of such systems cannot be ignored. Though the 

possible benefits for smallholder farmers are substantial-from yield protection to reduced inputs-the barriers of 

cost, technical illiteracy, trustworthiness of AI predictions, and infrastructure constraints still remain. The success 

of these systems is also not just linked to technological advances but also the extent to which they are accessible, 

explicable, and beneficial to the intended end-users. As important, multilingual support, culturally relevant 

interfaces, and participatory design approaches are critical for promoting uptake at the grassroots level.  

Another looming concern is the privacy, ownership in data, and cybersecurity issue concerning smart agricultural 

ecosystems. With farms getting more and more connected, safeguarding sensitive information like crop health, 

or farm location, yield will hugely present a priority. Incorporation of secure communication protocols with 

blockchain-based logging and privacy-preserving artificial intelligence methods like federated learning will 

make up the key ways in trust development at such systems. 

Finally, the increase of necessity in interdisciplinary cooperation. Well successively built, put into context, and 

deployed scalable, context-aware, and sustainable solutions must factor in all the expertise of AI researchers, 

agricultural scientists, hardware engineers, social scientists, and policymakers.  

However, Edge AI and IoT's potential revolutions can be realized in detecting diseases in agriculture. Such 

potential should, however, be understood with respect to the challenges heaped against real opportunities. The 

future of technology requires not only advancements but also careful integration, inclusiveness, and 

responsiveness to the rich variances of contemporary agriculture. 

CONCLUSION  

The future of this new paradigm is going to be thrilling revolution in precision agriculture regarding prompt 

hack-aggression against pest diseases-commercially sold against crops with Edge AI , most notably with the 

Internet of Things (IoT). The surveys will now be focused on altering the classes of research, architectures, 

models, and related mechanisms of deployment, which together add to the accoutrements of real-time, low-

latency, and energy-efficient design monitoring systems. 

Meanwhile, the work increasingly orients itself towards a near real-time character for low-power and energy-

efficient in-field crop monitoring systems. Some examples would include lightweight deep learning models that 

would work in edge-based applications and the application frameworks created for such applications from other 

data from environmental and/or image data sources. Through these standards of improvement of communication 
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as well as system-level improvements for system integration, already build a real-time, low-power crop 

monitoring system even under extreme and under-resourced environments. 

Great milestone, but there lies another mountain to climb. The models, however, in this case, are shown not to 

have enough robustness to deal with practical cases found in agriculture. On the contrary, these models perform 

very poorly regarding robustness in the generalization aspect across crop type, microniche, and disease variation. 

As a third hurdle, most of the AI models fail in training and validation due to the unavailability of well-annotated 

datasets in agriculture. 

The issues of privacy and security include questions on socioeconomic access to such solutions based on edge 

technology before their wider uptake or engendering of trust towards them. Future-oriented research must 

integrate advances in representative global benchmark datasets with explainable and privacy-preserving AI 

models for seamless integration into farm management systems.  

Generally working under inclusive design paradigms considering the needs and constraints of smallholder 

farmers as well as interdisciplinary collaboration will also help a long way in unlocking the value these 

technologies promise to deliver.  

In summary, IoT and Edge AI open up new avenues for disease diagnosis in agriculture and, through high-level 

research and innovative thinking in terms of systems-level impact, empower farmers with timely information 

and reduced crop losses while battling the world challenge of hunger. 
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