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ABSTRACT 

Bitopological harmonious labeling for a graph 𝐺 = (𝑉(𝐺), 𝐸(𝐺)) with 𝑛 vertices, is an injective function 

𝑓: 𝑉(𝐺) → 2𝑋, where X is any non – empty set such that |𝑋| = 𝑚, 𝑚 <  𝑛 and {𝑓(𝑉(𝐺))}  forms a topology 

on 𝑋, that induces an injective function 𝑓∗: 𝐸(𝐺)  →  2𝑋∗
, defined by 𝑓∗(𝑢𝑣)  =   𝑓(𝑢) ∩ 𝑓(𝑣) for every 𝑢𝑣 ∈

𝐸(𝐺) such that {𝑓∗(𝐸(𝐺))} forms a topology on 𝑋∗ where 𝑋∗ = 𝑋\{1,2, … . , 𝑚}. A graph that admits 

bitopological harmonious labeling is called a bitopological harmonious graph. In this paper, we discuss 

bitopological harmonious labeling of some star related graphs. 

Keywords: Bitopological harmonious graph, bistar graph, spider graph, lilly graph, firecracker graph. 

INTRODUCTION 

In this paper we consider only simple, finite and undirected graphs. The graph G has a vertex set V = V(G) and 

edge set E = E(G). For notations and terminology we refer to Bondy and Murthy[2]. Acharya [1] established 

another link between graph theory and point set topology. Selestin Lina S and Asha S defined bitopological 

star labeling for a graph 𝐺 = (𝑉, 𝐸) as X be any non-empty set if there exists an injective function 𝑓: 𝑉(𝐺) →
2𝑋 which induces the function 𝑓∗: 𝐸(𝐺) → 2𝑋 as  𝑓∗(𝑣1𝑣2)  =   [𝑓(𝑣1) ∪ 𝑓(𝑣2) ]𝑐 for every 𝑣1, 𝑣2 ∈ 𝑉(𝐺), if 

{𝑓(𝑉(𝐺))}and {𝑓∗(𝐸(𝐺))} ∪ 𝑋  are topolologies on X then G is said to be bitopological star graph. In this 

paper we proved some star related graphs are bitopological harmonious graph. 

Basic Definitions 

Definition 2.1 

Bitopological harmonious labeling of a graph 𝐺 = (𝑉(𝐺), 𝐸(𝐺)) with 𝑛 vertices is an injective function 

𝑓: 𝑉(𝐺) → 2𝑋, where X is any non – empty set such that |𝑋| = 𝑚, 𝑚 <  𝑛 and {𝑓(𝑉(𝐺))} forms a topology 

on 𝑋, that induces an injective function 𝑓∗: 𝐸(𝐺) →  2𝑋∗
, defined by 𝑓∗(𝑢𝑣)  =   𝑓(𝑢) ∩ 𝑓(𝑣) for every 𝑢𝑣 ∈

𝐸(𝐺) such that {𝑓∗(𝐸(𝐺))} forms a topology on 𝑋∗ where 𝑋∗ = 𝑋\{1,2, … . , 𝑚}. A graph that admits 

bitopological harmonious labeling is called a bitopological harmonious graph.   

Definition 2.2 

Bistar graph  𝐵𝑚,𝑛 is obtained from 𝐾2 by attaching 𝑚 pendent edges to one end of 𝐾2 and 𝑛 pendent edges to 

the other end of 𝐾2. 
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Definition 2.3 

A spider graph 𝑆𝑃(1𝑛22𝑚)  is a star graph 𝐾1,𝑛+𝑚 such that each of which 𝑚 vertices is joined to new vertex. 

Definition 2.4 

Lilly graph 𝐿𝑛 , 𝑛 ≥ 2, is obtained from 2 stars 2𝐾1,𝑛 , 𝑛 ≥ 2, by joining 2 paths 2𝑃𝑛 , 𝑛 ≥ 2 with sharing a 

common vertex. 

Definition 2.5 

Fire cracker graph 𝐹𝑛,𝑘 is the graph obtained by concatenation of 𝑛 𝑘 − stars by linking one leaf from each. 

MAIN RESULTS 

Theorem 3.1 

The bistar graph 𝐵𝑚,𝑛 , 𝑚, 𝑛 ≥ 1 is a bitopological harmonious graph. 

Proof: 

Let 𝐺 = 𝐵𝑚,𝑛. 

Let 𝑉(𝐺) = {𝑢, 𝑣} ∪ {𝑢𝑖/1 ≤ 𝑖 ≤ 𝑚} ∪ {𝑣𝑖/1 ≤ 𝑖 ≤ 𝑛}.   

Let 𝐸(𝐺) = {𝑢𝑣} ∪ {𝑢𝑢𝑖/1 ≤ 𝑖 ≤ 𝑚} ∪ {𝑣𝑣𝑖/1 ≤ 𝑖 ≤ 𝑛}.   

|𝑉(𝐺)| = 𝑚 + 𝑛 + 2, |𝐸(𝐺)| = 𝑚 + 𝑛 + 1. 

Let 𝑋 = {1,2, . . . , |𝑉(𝐺)| − 1}. 

Define a function 𝑓: 𝑉(𝐺)  →  2𝑋 as follows: 

𝑓(𝑢1) = 𝜙;     

𝑓(𝑢𝑖) = {1,2, . . . , 𝑖 − 1}  for  2 ≤  𝑖 ≤  𝑚; 

𝑓(𝑢) = {1,2, . . . , 𝑚}; 

𝑓(𝑣𝑖) = {1,2, . . . , 𝑚 + 𝑖}   for 1  ≤  𝑖 ≤  𝑛; 

 𝑓(𝑣) = {1,2, . . . , 𝑚 + 𝑛 + 1}.  

Here all the vertex labels are distinct and they form a topology on X. 

Then the induced function 𝑓∗: 𝐸(𝐺)  →  𝑋∗ is given as follows: 

𝑓∗(𝑢𝑣) = 𝑓(𝑢)  ∩  𝑓(𝑣) for all 𝑢𝑣 ∈  𝐸(𝐺). 

𝑓∗(𝑢𝑢𝑖) = 𝑓(𝑢𝑖)   for 1 ≤ 𝑖 ≤ 𝑚. 

𝑓∗(𝑣𝑣𝑖) = 𝑓(𝑣𝑖)   for 1 ≤ 𝑖 ≤ 𝑛. 

𝑓∗(𝑢𝑣) = 𝑓(𝑣). 

Since 𝑓 is 1-1 and so 𝑓∗. Also {𝑓∗(𝐸(𝐺))}  forms a topology on 𝑋∗. 

Hence 𝑓 is a bitopological harmonious labeling and 𝐺 is a bitopological harmonious graph. 
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Example 3.2 

 

Fig 3.1 Bitopological harmonious labeling of 𝐵5,6 

Theorem 3.3 

The Spider graph 𝑆𝑃(1𝑛2𝑚), 𝑚, 𝑛 ≥ 1 is a bitopological harmonious graph. 

Proof: 

Let 𝐺 = 𝑆𝑃(1𝑛2𝑚). 

Let 𝑉(𝐺) = {𝑣𝑖, 𝑢𝑗/0 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 2𝑚} where 𝑣0 be the centre vertex. 

Let 𝐸(𝐺) = {𝑣0𝑣𝑖/1 ≤ 𝑖 ≤ 𝑛} ∪ {𝑣0𝑢2𝑖−1/1 ≤ 𝑖 ≤ 𝑚}} ∪ {𝑢2𝑖−1𝑢2𝑖/1 ≤ 𝑖 ≤ 𝑚}.  .   

𝑇ℎ𝑒𝑛 |𝑉(𝐺)| = 𝑛 + 2𝑚 + 1, |𝐸(𝐺)| = 𝑛 + 2𝑚. 

Let 𝑋 = {1,2, . . . , |𝑉(𝐺)| − 1}. 

Define a function 𝑓: 𝑉(𝐺)  →  2𝑋 as follows: 

𝑓(𝑣1) = 𝜙;     

𝑓(𝑣𝑖) = {1,2, . . . , 𝑖 − 1}   for  2 ≤  𝑖 ≤  𝑛; 

𝑓(𝑢2𝑖) = {1,2, … , 𝑛 + 2𝑖 − 2}  for 1 ≤  𝑖 ≤  𝑚; 

𝑓(𝑢2𝑖−1) = {1,2, . . . , 𝑛 + 2𝑖 − 1}   for 1 ≤  𝑖 ≤  𝑚; 

𝑓(𝑣0) = {1,2, . . . , 𝑛 + 2𝑚}. 

Here all the vertex labels are distinct and they form a topology on X. 

Then the induced function 𝑓∗: 𝐸(𝐺) → 2𝑋∗
 is given as follows: 

𝑓∗(𝑢𝑣) = 𝑓(𝑢) ∩ 𝑓(𝑣) for all 𝑢𝑣 𝜖 𝐸(𝐺).  

Here 𝑓∗(𝑣0𝑣𝑖) = 𝑓(𝑣𝑖) for 1 ≤ 𝑖 ≤ 𝑛; 
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𝑓∗(𝑣0𝑢2𝑖−1) = 𝑓(𝑢2𝑖−1) for 1 ≤ 𝑖 ≤ 𝑚; 

𝑓∗(𝑣2𝑖−1𝑢2𝑖) = 𝑓(𝑢2𝑖) for 1 ≤ 𝑖 ≤ 𝑚. 

Since 𝑓 is 1-1 and so 𝑓∗. Also {𝑓∗(𝐸(𝐺))}  forms a topology on 𝑋∗. 

Hence 𝑓 is a bitopological harmonious labeling and 𝐺 is a bitopological harmonious graph.  

Example 3.4  

 

Fig 3.2 Bitopological harmonious labeling of 𝑆𝑃(1526) 

Theorem 3.5 

Lilly graph 𝐿𝑛 , 𝑛 ≥ 2  is a bitopological harmonious graph. 

Proof: 

Let 𝐺 = 𝐿𝑛. 

Let  𝑉(𝐺) = {𝑢𝑖/ 1 ≤ 𝑖 ≤ 2𝑛 − 1} ∪ {𝑣𝑖/ 1 ≤ 𝑖 ≤ 2𝑛}. 

Let 𝐸(𝐺) = {𝑣𝑖𝑢𝑛/1 ≤ 𝑖 ≤ 2𝑛} ∪ {𝑢𝑖𝑢𝑖+1/1 ≤ 𝑖 ≤ 2𝑛 − 2}. 

|𝑉(𝐺)| = 4𝑛 − 1, |𝐸(𝐺)| = 4𝑛 − 2. 

Let 𝑋 = {1,2, . . . , |𝑉(𝐺)| − 1}. 

Define a function 𝑓: 𝑉(𝐺)  →  2𝑋 as follows: 

𝑓(𝑣1) = 𝜙;     

𝑓(𝑣𝑖) = {1,2, . . . , 𝑖 − 1}   for 2 ≤  𝑖 ≤  2𝑛; 

𝑓(𝑢𝑖) = {1,2, … ,2𝑛 + 𝑖 − 1}  for 1 ≤  𝑖 ≤  2𝑛 − 1. 

Here all the vertex labels are distinct and they form a topology on X. 

Then the induced function 𝑓∗: 𝐸(𝐺) → 2𝑋∗
 is given as follows: 

𝑓∗(𝑢𝑣) = 𝑓(𝑢) ∩ 𝑓(𝑣) for all 𝑢𝑣 𝜖 𝐸(𝐺).  
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Here 𝑓∗(𝑣𝑖𝑢𝑛) = 𝑓(𝑣𝑖) for 1 ≤ 𝑖 ≤ 2𝑛; 

𝑓∗(𝑢𝑖𝑢𝑖+1) = 𝑓(𝑢𝑖) for 1 ≤ 𝑖 ≤ 2𝑛 − 1. 

Since 𝑓 is 1-1 and so 𝑓∗. Also {𝑓∗(𝐸(𝐺))}  forms a topology on 𝑋∗. 

Hence 𝑓 is a bitopological harmonious labeling and 𝐺 is a bitopological harmonious graph.  

Example 3.6 

 

Fig 3.3 Bitopological harmonious labeling of 𝐿5 

Theorem 3.7 

The firecracker graph 𝐹𝑛,𝑘, 𝑛, 𝑘 ≥ 1 is a bitopological harmonious graph. 

Proof: 

Let 𝐺 = 𝐹𝑛,𝑘. 

Let  𝑉(𝐺) = {𝑣𝑖𝑗/ 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑘}. 

Let 𝐸(𝐺) = {𝑣𝑖1𝑣𝑖𝑗/1 ≤ 𝑖 ≤ 𝑛, 2 ≤ 𝑗 ≤ 𝑘} ∪ {𝑣𝑖𝑘𝑣𝑖+1𝑘/1 ≤ 𝑖 ≤ 𝑛 − 1}. 

|𝑉(𝐺)| = 𝑛𝑘, |𝐸(𝐺)| = 𝑛𝑘 − 1. 

Let 𝑋 = {1,2, . . . , |𝑉(𝐺)| − 1}. 

Define a function 𝑓: 𝑉(𝐺)  →  2𝑋 as follows: 

𝑓(𝑣12) = 𝜙;     

𝑓(𝑣1𝑗) = {1,2, . . . , 𝑗 − 2}   for   3 ≤  𝑗 ≤  𝑘 − 1; 

𝑓(𝑣𝑖1) = {1,2, . . . , 𝑘𝑖 − 2}   for   1 ≤  𝑖 ≤  𝑛; 

𝑓(𝑣𝑖𝑘) = {1,2, . . . , 𝑘𝑖 − 1}   for   1 ≤  𝑖 ≤  𝑛; 

𝑓(𝑣𝑖𝑗) = {1,2, … , 𝑘(𝑖 − 1) + 𝑗 − 2}  for 2 ≤  𝑖 ≤  𝑛, 2 ≤  𝑗 ≤  𝑘 − 1. 

Here all the vertex labels are distinct and they form a topology on X. 
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Then the induced function 𝑓∗: 𝐸(𝐺) → 2𝑋∗
 is given as follows: 

𝑓∗(𝑢𝑣) = 𝑓(𝑢) ∩ 𝑓(𝑣) for all 𝑢𝑣 𝜖 𝐸(𝐺).    

Here 𝑓∗(𝑣𝑖1𝑣𝑖𝑗) = 𝑓(𝑣𝑖𝑗) for 1 ≤ 𝑖 ≤ 𝑛, 2 ≤ 𝑗 ≤ 𝑘; 

𝑓∗(𝑣𝑖𝑘𝑣𝑖+1𝑘) = 𝑓(𝑣𝑖𝑘) for 1 ≤ 𝑖 ≤ 𝑛 − 1. 

 Since 𝑓 is 1-1 and so 𝑓∗. Also {𝑓∗(𝐸(𝐺))}  forms a topology on 𝑋∗. 

Hence 𝑓 is a bitopological harmonious labeling and 𝐺 is a bitopological harmonious graph.  

Example 3.8 

 

Fig 3.4 Bitopological harmonious labeling of 𝐹4,6 

CONCLUSION 

In this paper, we proved some star related graphs bistar, spider graph, lilly graph and firecracker graph are 

bitopological harmonious graph.  
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