

1551V 1VO. 2434-0134 | DOI: 10.31304/13KIAS | VOIGING X ISSUE VI JUNE 2023

Bitopological Harmonious Labeling of Some Star Related Graphs

M. Subbulakshmi¹, S. Chandrakala², G. Siva Prijith^{3*}

¹Associate Professor, PG and Research Department of Mathematics, G. Venkataswamy Naidu College, Kovilpatti

²Associate Professor, PG & Research Department of Mathematics, Tirunelveli Dakshina Mara Nadar Sangam College, T.Kallikulam

³Research Scholar, Reg. No. 19222052092004, G. Venkataswamy Naidu College, Kovilpatti, Affiliated to Manonmaniam Sundaranar University, Tirunelveli

DOI: https://doi.org/10.51584/IJRIAS.2025.100600147

Received: 30 June 2025; Accepted: 03 July 2025; Published: 25 July 2025

ABSTRACT

Bitopological harmonious labeling for a graph G = (V(G), E(G)) with n vertices, is an injective function $f: V(G) \to 2^X$, where X is any non – empty set such that |X| = m, m < n and $\{f(V(G))\}$ forms a topology on X, that induces an injective function $f^*: E(G) \to 2^{X^*}$, defined by $f^*(uv) = f(u) \cap f(v)$ for every $uv \in E(G)$ such that $\{f^*(E(G))\}$ forms a topology on X^* where $X^* = X \setminus \{1, 2, ..., m\}$. A graph that admits bitopological harmonious labeling is called a bitopological harmonious graph. In this paper, we discuss bitopological harmonious labeling of some star related graphs.

Keywords: Bitopological harmonious graph, bistar graph, spider graph, lilly graph, firecracker graph.

INTRODUCTION

In this paper we consider only simple, finite and undirected graphs. The graph G has a vertex set V = V(G) and edge set E = E(G). For notations and terminology we refer to Bondy and Murthy[2]. Acharya [1] established another link between graph theory and point set topology. Selestin Lina S and Asha S defined bitopological star labeling for a graph G = (V, E) as X be any non-empty set if there exists an injective function $f: V(G) \rightarrow 2^X$ which induces the function $f^*: E(G) \rightarrow 2^X$ as $f^*(v_1v_2) = [f(v_1) \cup f(v_2)]^c$ for every $v_1, v_2 \in V(G)$, if $\{f(V(G))\}$ and $\{f^*(E(G))\} \cup X$ are topolologies on X then G is said to be bitopological star graph. In this paper we proved some star related graphs are bitopological harmonious graph.

Basic Definitions

Definition 2.1

Bitopological harmonious labeling of a graph G = (V(G), E(G)) with n vertices is an injective function $f: V(G) \to 2^X$, where X is any non – empty set such that |X| = m, m < n and $\{f(V(G))\}$ forms a topology on X, that induces an injective function $f^*: E(G) \to 2^{X^*}$, defined by $f^*(uv) = f(u) \cap f(v)$ for every $uv \in E(G)$ such that $\{f^*(E(G))\}$ forms a topology on X^* where $X^* = X \setminus \{1, 2, ..., m\}$. A graph that admits bitopological harmonious labeling is called a bitopological harmonious graph.

Definition 2.2

Bistar graph $B_{m,n}$ is obtained from K_2 by attaching m pendent edges to one end of K_2 and n pendent edges to the other end of K_2 .

ISSN No. 2454-6194 | DOI: 10.51584/IJRIAS | Volume X Issue VI June 2025

Definition 2.3

A spider graph $SP(1^n2^{2m})$ is a star graph $K_{1,n+m}$ such that each of which m vertices is joined to new vertex.

Definition 2.4

Lilly graph L_n , $n \ge 2$, is obtained from 2 stars $2K_{1,n}$, $n \ge 2$, by joining 2 paths $2P_n$, $n \ge 2$ with sharing a common vertex.

Definition 2.5

Fire cracker graph $F_{n,k}$ is the graph obtained by concatenation of n k – stars by linking one leaf from each.

MAIN RESULTS

Theorem 3.1

The bistar graph $B_{m,n}$, m, $n \ge 1$ is a bitopological harmonious graph.

Proof:

Let
$$G = B_{m,n}$$
.

Let
$$V(G) = \{u, v\} \cup \{u_i/1 \le i \le m\} \cup \{v_i/1 \le i \le n\}$$
.

Let
$$E(G) = \{uv\} \cup \{uu_i/1 \le i \le m\} \cup \{vv_i/1 \le i \le n\}$$
.

$$|V(G)| = m + n + 2, |E(G)| = m + n + 1.$$

Let
$$X = \{1, 2, ..., |V(G)| - 1\}.$$

Define a function $f: V(G) \rightarrow 2^X$ as follows:

$$f(u_1) = \phi$$
;

$$f(u_i) = \{1, 2, \dots, i-1\}$$
 for $2 \le i \le m$;

$$f(u) = \{1, 2, \dots, m\};$$

$$f(v_i) = \{1, 2, ..., m + i\}$$
 for $1 \le i \le n$;

$$f(v) = \{1,2,\ldots,m+n+1\}.$$

Here all the vertex labels are distinct and they form a topology on X.

Then the induced function f^* : $E(G) \to X^*$ is given as follows:

$$f^*(uv) = f(u) \cap f(v)$$
 for all $uv \in E(G)$.

$$f^*(uu_i) = f(u_i)$$
 for $1 \le i \le m$.

$$f^*(vv_i) = f(v_i)$$
 for $1 \le i \le n$.

$$f^*(uv) = f(v).$$

Since f is 1-1 and so f^* . Also $\{f^*(E(G))\}$ forms a topology on X^* .

Hence f is a bitopological harmonious labeling and G is a bitopological harmonious graph.

Example 3.2

Fig 3.1 Bitopological harmonious labeling of $B_{5.6}$

Theorem 3.3

The Spider graph $SP(1^n2^m)$, $m, n \ge 1$ is a bitopological harmonious graph.

Proof:

Let
$$G = SP(1^n 2^m)$$
.

Let
$$V(G) = \{v_i, u_j / 0 \le i \le n, 1 \le j \le 2m\}$$
 where v_0 be the centre vertex.

Let
$$E(G) = \{v_0v_i/1 \le i \le n\} \cup \{v_0u_{2i-1}/1 \le i \le m\}\} \cup \{u_{2i-1}u_{2i}/1 \le i \le m\}$$
. .

Then
$$|V(G)| = n + 2m + 1$$
, $|E(G)| = n + 2m$.

Let
$$X = \{1, 2, ..., |V(G)| - 1\}.$$

Define a function $f:V(G) \to 2^X$ as follows:

$$f(v_1) = \phi;$$

$$f(v_i) = \{1, 2, \dots, i-1\} \text{ for } 2 \le i \le n;$$

$$f(u_{2i}) = \{1, 2, \dots, n + 2i - 2\} \text{ for } 1 \le i \le m;$$

$$f(u_{2i-1}) = \{1,2,\dots,n+2i-1\} \ \text{ for } 1 \leq i \leq m;$$

$$f(v_0) = \{1, 2, \dots, n + 2m\}.$$

Here all the vertex labels are distinct and they form a topology on X.

Then the induced function f^* : $E(G) \to 2^{X^*}$ is given as follows:

$$f^*(uv) = f(u) \cap f(v)$$
 for all $uv \in E(G)$.

Here
$$f^*(v_0 v_i) = f(v_i)$$
 for $1 \le i \le n$;

$$f^*(v_0u_{2i-1}) = f(u_{2i-1})$$
 for $1 \le i \le m$;

$$f^*(v_{2i-1}u_{2i}) = f(u_{2i})$$
 for $1 \le i \le m$.

Since f is 1-1 and so f^* . Also $\{f^*(E(G))\}$ forms a topology on X^* .

Hence f is a bitopological harmonious labeling and G is a bitopological harmonious graph.

Example 3.4

Fig 3.2 Bitopological harmonious labeling of $SP(1^52^6)$

Theorem 3.5

Lilly graph L_n , $n \ge 2$ is a bitopological harmonious graph.

Proof:

Let
$$G = L_n$$
.

Let
$$V(G) = \{u_i / 1 \le i \le 2n - 1\} \cup \{v_i / 1 \le i \le 2n\}.$$

Let
$$E(G) = \{v_i u_n / 1 \le i \le 2n\} \cup \{u_i u_{i+1} / 1 \le i \le 2n - 2\}.$$

$$|V(G)| = 4n - 1, |E(G)| = 4n - 2.$$

Let
$$X = \{1, 2, ..., |V(G)| - 1\}.$$

Define a function $f: V(G) \rightarrow 2^X$ as follows:

$$f(v_1) = \phi;$$

$$f(v_i) = \{1, 2, \dots, i-1\} \text{ for } 2 \le i \le 2n;$$

$$f(u_i) = \{1, 2, ..., 2n + i - 1\} \text{ for } 1 \le i \le 2n - 1.$$

Here all the vertex labels are distinct and they form a topology on X.

Then the induced function f^* : $E(G) \to 2^{X^*}$ is given as follows:

$$f^*(uv) = f(u) \cap f(v)$$
 for all $uv \in E(G)$.

Here $f^*(v_i u_n) = f(v_i)$ for $1 \le i \le 2n$;

$$f^*(u_i u_{i+1}) = f(u_i)$$
 for $1 \le i \le 2n - 1$.

Since f is 1-1 and so f^* . Also $\{f^*(E(G))\}$ forms a topology on X^* .

Hence f is a bitopological harmonious labeling and G is a bitopological harmonious graph.

Example 3.6

Fig 3.3 Bitopological harmonious labeling of L_5

Theorem 3.7

The firecracker graph $F_{n,k}$, $n, k \ge 1$ is a bitopological harmonious graph.

Proof:

Let
$$G = F_{nk}$$
.

Let
$$V(G) = \{v_{ij} / 1 \le i \le n, 1 \le j \le k\}$$
.

Let
$$E(G) = \{v_{i1}v_{ij}/1 \le i \le n, \ 2 \le j \le k\} \cup \{v_{ik}v_{i+1k}/1 \le i \le n-1\}.$$

$$|V(G)| = nk, |E(G)| = nk - 1.$$

Let
$$X = \{1, 2, ..., |V(G)| - 1\}.$$

Define a function $f: V(G) \rightarrow 2^X$ as follows:

$$f(v_{12}) = \phi;$$

$$f(v_{1i}) = \{1, 2, \dots, j-2\}$$
 for $3 \le j \le k-1$;

$$f(v_{i1}) = \{1, 2, \dots, ki - 2\}$$
 for $1 \le i \le n$;

$$f(v_{ik}) = \{1, 2, \dots, ki - 1\}$$
 for $1 \le i \le n$;

$$f(v_{ij}) = \{1, 2, \dots, k(i-1) + j - 2\} \text{ for } 2 \le i \le n, \ 2 \le j \le k-1.$$

Here all the vertex labels are distinct and they form a topology on X.

INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN APPLIED SCIENCE (IJRIAS)

ISSN No. 2454-6194 | DOI: 10.51584/IJRIAS | Volume X Issue VI June 2025

Then the induced function $f^*: E(G) \to 2^{X^*}$ is given as follows:

 $f^*(uv) = f(u) \cap f(v)$ for all $uv \in E(G)$.

Here $f^*(v_{i1}v_{ij}) = f(v_{ij})$ for $1 \le i \le n$, $2 \le j \le k$;

 $f^*(v_{ik}v_{i+1k}) = f(v_{ik})$ for $1 \le i \le n-1$.

Since f is 1-1 and so f^* . Also $\{f^*(E(G))\}$ forms a topology on X^* .

Hence f is a bitopological harmonious labeling and G is a bitopological harmonious graph.

Example 3.8

Fig 3.4 Bitopological harmonious labeling of $F_{4.6}$

CONCLUSION

In this paper, we proved some star related graphs bistar, spider graph, lilly graph and firecracker graph are bitopological harmonious graph.

REFERENCES

- 1. Acharya B.D., Set valuations and their applications, MRI Lecture note in Applied Mathematics, No.2, Mehta Research Institute of Mathematics and Mathematical Physics, 1983.
- 2. Bondy J.A and Murthy U.S.R, "Graph Theory and Application" (North Holland). New York (1976).
- 3. Joseph A Gallian 2018, 'A Dynamic Survey of Graph Labeling', The Electronic Journal of Combinatorics.
- 4. Selestin Lina S, Asha S, 'On Topological Cordial Graphs', Journal of Science and Technology, 5(2020), 25-28.
- 5. Selestin Lina S, Asha S, 'Topological cordial labeling of some graphs', Malaya Journal of Matematik, Vol. 9, No. 1, 861-863.
- 6. Selestin Lina, S. & Asha, S. (2022), 'Bitopological labeling of tree related graphs', AIP Conference Proceedings. 2385. 130016. 10.1063/5.0070851.
- 7. G. Siva Prijith, M. Subbulakshmi, S. Chandrakala, 'Topological Cordial Labelling of Some Graphs', Mapana Journal of Sciences 2023, Vol. 22, Special Issue 1, 129-140 ISSN 0975-3303.