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ABSTRACT 

This paper presents a mathematical modeling framework for a biomass waste-to-energy conversion 

technology, focusing on the anaerobic digestion of manure to produce biogas. The core of the model is the 

Anaerobic Digestion Model No. 1 (ADM1), which simulates the biochemical conversion processes within the 

digester. The ADM1 model was adapted to dairy manure by modifying its kinetic parameters, allowing for 

accurate prediction of biogas production based on waste characteristics such as chemical composition, dry 

matter content, and organic fractions. The biogas output is subsequently used to generate electricity and heat 

through a technology comprising an internal combustion engine, an induction generator, a heat exchanger, and 

a dual-fuel boiler. Each component is mathematically modeled to estimate performance outputs, including 

torque, electric power, and thermal energy. The integration of these models enables a detailed energy balance 

analysis and supports technology optimization. Limitations of the current model include assumptions of 

steady-state operation and limited adaptability to varied waste streams. Future research will focus on 

improving model flexibility, incorporating dynamic behaviors, and enhancing real-time control capabilities for 

broader application in waste-to-energy technology. 

Keywords: Anaerobic Digestion, ADM1 Model, Biomass Waste-to-Energy, Mathematical Modeling, 

Renewable Energy 

INTRODUCTION 

The increasing global demand for sustainable energy has brought renewed focus on the conversion of organic 

waste into renewable energy through technologies such as anaerobic digestion [1-3]. Anaerobic digestion not 

only reduces the environmental burden of waste disposal but also produces biogas, a versatile energy source 

that can be used for heat, electricity, or upgraded for other applications [4-6]. However, the complexity of 

biochemical processes involved in anaerobic digestion necessitates robust modeling tools that can accurately 

simulate technology performance and optimize outcomes under varying conditions. 

One of the key challenges in waste-to-energy technology lies in understanding how the physical and chemical 

properties of different waste streams influence biogas yield and technology behavior [7-9]. Agricultural 

residues, animal manure, food waste, and municipal solid waste all present different compositional 

characteristics and require careful characterization for effective treatment and energy recovery [10,11]. 

Accurate modeling enables stakeholders to make informed decisions about digester design, operational 

strategies, and resource allocation. 

This paper addresses these challenges by focusing on the development of a modeling approach that integrates 

waste characterization, energy output estimation, and process economics. Specifically, it explores how 

measurable waste properties, commonly available through standard laboratory tests, can be transformed into 

actionable inputs for dynamic simulation of anaerobic digestion processes. The study aims to bridge the gap 

between laboratory measurements and computational modeling, enhancing the applicability of simulation tools 

in practical biomass-to-energy applications. 

The ADM1 Model for Biomass Waste-to-Energy Conversion 

The Anaerobic Digestion Model No. 1 (ADM1), forms the core of the modeling framework for this biomass  
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waste-to-energy conversion technology. ADM1 is a comprehensive computer-based model that simulates the 

anaerobic digestion of organic waste and estimates energy generation outputs, process costs, and biogas 

production [12-14]. In this study, ADM1 is applied specifically to the treatment of manure waste. 

ADM1 represents the anaerobic digestion process as a sequence of biochemical and physico-chemical 

reactions [15-17]. The model employs a modular approach, wherein each stage of waste treatment, hydrolysis, 

acidogenesis, acetogenesis, and methanogenesis, is treated distinctly, with its own set of kinetic and 

stoichiometric parameters [13, 18]. The input to the ADM1 model is defined primarily by the mass flow rate of 

the biomass waste, along with detailed waste characterisation parameters, including density, dry matter 

content, and the mass fractions of carbon (C), hydrogen (H), oxygen (O), nitrogen (N), sulfur (S), phosphorus 

(P), potassium (K), and ash content. The ADM1 software calculates key technology outputs such as the 

volume flow rate of biogas, electricity output, heat generation, and process costs, using a mass balance 

approach [19,20]. This involves writing balanced chemical equations based on the elemental composition of 

the input waste. Unlike some simplified empirical models, ADM1 provides a granular representation of the 

anaerobic digestion process by tracking individual components and microbial groups across the digestion 

stages. 

A major contribution of this study is the methodology developed to transform measurable waste characteristics 

such as total solids, volatile solids, Chemical Oxygen Demand (COD), Volatile Fatty Acids (VFAs), total 

nitrogen, ammonia content, phosphorus, and orthophosphates, into the characterisation parameters required by 

ADM1. These conversions are essential to enhance model input accuracy and to make the ADM1 model 

applicable across a broader range of real-world waste streams. By incorporating such measurable data, the 

model becomes more adaptable to site-specific conditions and facilitates practical deployment. 

A review of existing models that simulate anaerobic digestion reveals multiple modeling paradigms: the mass 

balance approach [21,22], fuzzy logic, statistical and neural network models [23-25], and knowledge-based 

models [12,26]. While mass balance models (e.g., Contois-based models) are computationally simple, they 

often lack accuracy and applicability across diverse technology configurations. Fuzzy and neural network 

models provide empirical predictions but require extensive datasets and offer limited insight into process 

mechanisms. Knowledge-based models such as ADM1, stand out due to their detailed representation of 

biological pathways and use of kinetic and stoichiometric modeling. In contrast to models that estimate biogas 

output solely from proximate analysis or empirical correlations, ADM1 integrates both proximate and ultimate 

analyses to develop a complete stoichiometric and kinetic model. This enables a more accurate prediction of 

biogas yield by accounting for the biochemical composition of the waste and the environmental conditions 

under which digestion occurs. 

While the model provides robust predictions for biogas generation, opportunities for enhancement remain. One 

such extension is the integration of pH modeling, which is essential for assessing microbial activity and 

technology stability during digestion. Currently, ADM1 assumes standard pH conditions [27,28], but 

incorporating pH as a variable would allow more dynamic simulation of acidogenesis and methanogenesis 

phases. Moreover, ADM1 supports greenhouse gas emission reduction assessments [29,30], making it suitable 

for evaluating the environmental impact of biogas technologies. In this regard, it can be aligned with 

sustainability objectives, such as reducing carbon footprints and promoting circular economy principles in 

agriculture and waste management. 

ADM1 stands out as a powerful and flexible modeling framework for the simulation and optimization of 

anaerobic digestion technologies. Its detailed representation of biological processes, integration of real-world 

data, and adaptability to various waste streams make it particularly valuable in the context of energy and 

environmental engineering. As global efforts to decarbonize energy technologies and manage organic waste 

intensify, models like ADM1 are critical for supporting the design, operation, and policy planning of 

sustainable bioenergy solutions. 

Modeling of the technology components.  

The input to the biomass waste to energy conversion technology is volume flow rate of manure waste. This  
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goes into the digester. The output of the biomass waste to energy conversion technology is heat and electricity. 

The core of the conversion system is the anaerobic digester, where manure undergoes biological 

decomposition to produce biogas. The digestion process is mathematically represented using the ADM1, a 

widely accepted framework initially developed for wastewater treatment applications [12,17,31]. For this 

study, the ADM1 kinetic parameters have been adapted to better represent the anaerobic digestion of dairy 

manure, capturing the mass flow rate, air-fuel ratio, biogas density, and lower heating value (LHV). These 

outputs are crucial for subsequent components, particularly the internal combustion engine. 

Digester                   

The ADM1 is used to model the digester. The ADM1 was formulated as a tool for modeling waste water 

treatment [12,17]. The kinetic parameters of the ADM1 were modified to simulate the anaerobic digestion of 

dairy manure. The manure from the lagoon undergoes anaerobic digestion, in the digester, to produce biogas. 

The anaerobic digestion process is modeled and the mass flow rate, the air-fuel ratio, the density and the LHV 

(Lower Heating Value) of biogas are calculated. These values are required by the internal combustion engine 

model to calculate torque output. The stages of the anaerobic digestion process are shown in Figure 1. The first 

stage of the anaerobic digestion process is hydrolysis, where bacteria break down organic matter to sugars, 

fatty acids and amino acids. This is followed by the acid digestion stages, acidogenesis and acetogenesis. 

During acid digestion the molecules from hydrolysis are absorbed by the acid forming bacteria, producing 

short chain fatty acids, carbon dioxide and hydrogen. The final stage of the anaerobic digestion process is gas 

digestion. 

 

Figure 1: Anaerobic Digestion Process 

During gas digestion methane forming bacteria attack the fatty acids to form methane, carbon dioxide and 

water vapour. The ADM1 model groups the anaerobic digestion processes into biochemical and physico-

chemical processes. Biochemical processes are catalysed by intracellular or extracellular enzymes and act on a 

pool of organic material. Physico-chemical processes are not biologically mediated and involve association or 

dissociation, transfer between gas and liquid phases and precipitation. The ADM1 does not model 

precipitation. The ADM1 model is based on a completely stirred reactor with a single input and output waste 

stream and a constant liquid volume with a gas above it (Figure 2). The waste stream and the gas are 

categorised into components, designated by i. The waste stream components comprise of substrates and active 

biomass. There are 12 substrates and 12 active biomass components whose concentrations are defined by: 
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 Sin,i for i= 1,2,3,…,12,  (1) 

Sliq,i for i= 1,2,3,…,12,  (2) 

Xin, i for i= 12,13,14,…,24,  (3) 

Xliq,i for i= 12,13,14,…,24,  (4) 

Where Sin is the concentration of the substrate in the input waster stream, Sliq is the concentration of the 

substrate in the liquid phase of the waste stream, Xin is the concentration of the active biomass in the input 

waste stream. The gas above the reactor has 3 components. The concentration of the substrates in the gas 

components and their partial pressures are defined by: 

Sgas,i for i= 1,2,3,  (5) 

p gas,i for i= 1,2,3,  (6) 

where Sgas is the concentration of the substrate in the gas component and pgas is the partial pressure of the gas 

component. A mass balance of the components is carried out. The mass balance is the rate of mass change of 

the components. The mass change occurs as a result of the biochemical and physico-chemical reactions. The 

structure used for modeling the biochemical reactions in the ADM1 is shown in Figure 3. The structure has 

two extracellular steps: disintegration and hydrolysis, and three intra-cellular steps: acidogenesis, acetogenesis 

and methanogenesis. The arrows in Figure 3 show the process flow, with hydrolysis, acidogenesis and 

acetogenesis having a number of parallel reactions. 

 

Figure 2: ADM1 Reactor 

There are 19 biochemical reactions modeled by ADM1, designated by j. Reactions j = 1, 2, 3, 4, are 

disintegration and hydrolysis reactions and j = 5, 6, 7, ..., 19, are acidogenesis, acetogenesis and 

methanogenesis reactions. The mass balance of the substrates in the liquid phase [32,33] is calculated by: 

𝑑𝑆𝑙𝑖𝑞,𝑖

𝑑𝑡
=

𝑞𝑖𝑛 𝑆𝑖𝑛,𝑖−𝑞𝑜𝑢𝑡𝑆𝑙𝑖𝑞,𝑖

𝑉𝑙𝑖𝑞
+ ∑ 𝑝𝑗𝑣𝑖.𝑗

19
𝑗=1       kgCOD/m3/day,  

for i= 1,2,3,…12, 

(7) 

 

Where Sliq is the concentration of the component in the digester, qin is the volume flow rate of manure going 

into the digester, Sin is the concentration of the component going into the digester, qout is the volume flow rate 

of the effluent leaving the digester, Vliq is the volume of the digester, ρ is the kinetic rate of the reaction and v 
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is the stoichiometric coefficient of the reaction. kgCOD/m3 is the chemical component base unit used to model 

the anaerobic digestion process. COD (Chemical Oxygen Demand) is the mass of oxygen required to 

completely oxidise a given organic compound. The calculation of the stoichiometric coefficients v of the 

different reactions is detailed in [32,34]. The kinetic rate ρ depends on the type of reaction. The kinetic rate of 

the disintegration and hydrolysis reactions [32,34] is calculated by:  

𝜌𝑗 = 𝑘𝑗𝑋𝑖       

for i= 13,14,15,16 and j =1,2,3,4, 

kgCOD/m3/day, (8) 

 

where ρ is the kinetic rate of the reaction, k is the first order rate coefficient of the reaction and X is the 

concentration of the active biomass component.  

The kinetic rate of the acidogenesis, acetogenesis and methanogenesis reactions is 

 

Figure 3: Modeling of Biochemical Reactions in ADM1 

calculated by: 

𝜌𝑗 = (𝑘𝑚,𝑗𝑆𝑖 (𝐾𝑖 + 𝑆𝑖)⁄ )𝑋𝐼1𝐼2𝐼3       

for i = 1,2,3,…12, and j =5,6,7,…12, 

kgCOD/m3/day, (9) 

 

X = Xi       for i = 17,18,19,…23 kgCOD/m3, (10) 

where ρ is the kinetic rate of the reaction, km is the maximum specific rate of substrate utilisation, S is the 

concentration of the waste component, K is the concentration giving half the maximum rate of utilisation of the 

component, X is the concentration of active biomass in the component, I1 is hydrogen inhibition, I2 is free 

ammonia inhibition and I3 is pH inhibition.  

Hydrogen and free ammonia inhibitions are calculated by: 

I = 1/(1+S1/K1)  (11) 
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where I is inhibition, S1 is the concentration of the inhibitory component I and K1 is an inhibition constant. pH 

inhibition is calculated by: 

I = {
exp(−3((pH − pHUL) (pHUL − pHLL)⁄ )2) if pH < pHUL

(1 + 2 × 100.5(pHLL−pHUL)) (1 + 10(pH−pHUL) + 10(pHLL−pH)) if pH ≥ pHUL,⁄
 

(12) 

 

where I is inhibition, pHLL is the lower limit of pH and pHUL is the upper limit of pH. The mass balance 

equation [32] for the gas phase is: 

𝑑𝑆𝑔𝑎𝑠,𝑖

𝑑𝑡
= −

𝑞𝑔𝑎𝑠𝑆𝑔𝑎𝑠,𝑖

𝑉𝑔𝑎𝑠
+ 𝜌T,𝑖

𝑉𝑙𝑖𝑞

𝑉𝑔𝑎𝑠
 for 𝑖 = 1,2,3, 

kgCOD/m3/day, (13) 

where Sgas is the concentration of the biogas component, qgas is the volume flow rate of biogas from the 

digester, Vgas is the volume of the gas headspace in the digester, ρT is the kinetic rate of the liquid-gas transfer 

reaction of the biogas component and Vliq is the volume of the digester. The kinetic rates of the liquid-gas 

transfer reactions for hydrogen, methane and carbon dioxide are calculated by: 

𝜌𝑇,𝐻2
= 𝑘𝐿α (𝑆𝑙𝑖𝑞,𝐻2

− 16𝐾H,H2 pgas,H2
) kgCOD/m3, (14) 

𝜌𝑇,𝐶𝐻4
= 𝑘𝐿α (𝑆𝑙𝑖𝑞,𝐶𝐻4

− 64𝐾H,CH4pgas,CH4
) kgCOD/m3, (15) 

𝜌𝑇,𝐶𝑂2
= 𝑘𝐿α (𝑆𝑙𝑖𝑞,𝐶𝑂2

− 𝐾H,CO2pgas,CO2
) kgCOD/m3, (16) 

where 𝜌𝑇,𝐻2
, 𝜌𝑇,𝐶𝐻4

  and 𝜌𝑇,𝐶𝑂2
 are the kinetic rates of the liquid-gas transfer reactions of hydrogen, methane 

and carbon dioxide respectively, kL is the overall mass transfer coefficient, a is the specific transfer area, 

𝑆𝑙𝑖𝑞,𝐻2
, 𝑆𝑙𝑖𝑞,𝐶𝐻4

 and 𝑆𝑙𝑖𝑞,𝐶𝑂2
 are the concentrations of hydrogen, methane and carbon dioxide 

respectively,  𝐾H,H2, 𝐾H,CH4
 and 𝐾H,CO2

 are the Henry’s law coefficients of hydrogen, methane and carbon 

dioxide respectively and pgas,H2, pgas,CH4 and pgas,CO2 are the partial pressures of hydrogen, methane and 

carbon dioxide respectively. The mass balance equation of the gas phase calculates the volume flow rate of 

biogas produced. The internal combustion engine model requires the mass flow rate of biogas, the air-fuel ratio 

of biogas and the LHV of biogas in order to calculate torque output. The volume flow rate of biogas, qgas is 

required to solve the differential equation (13). This is calculated by: 

𝑞gas =  𝑘p(𝑃gas − 𝑃atm) m3/day, (17) 

where qgas is the volume flow rate of biogas, kp is a pipe resistance coefficient, Pgas is the pressure of biogas 

and Patm is atmospheric pressure. The mass flow rate of biogas is calculated from the density and the volume 

flow rate of biogas. The density of biogas is calculated by: 

𝜌gas =  𝑀gas𝑃gas 𝑅𝑇biogas⁄  kg/m3, (18) 

where ρgas is the density of biogas, Mgas is the molar mass of biogas, Pgas is the pressure of biogas, R is the 

universal perfect gas constant and Tbiogas is the temperature of biogas. The pressure of biogas is the sum of the 

partial pressures of hydrogen, methane, carbon dioxide and water vapour, which are calculated by: 

𝑝gas,𝐻2
=  𝑆gas,H2

𝑅𝑇biogas bar, (19) 

𝑝gas,𝐶𝐻4
=  𝑆gas,CH4

𝑅𝑇biogas bar, (20) 

𝑝gas,𝐶𝑂2
=  𝑆gas,CO2

𝑅𝑇biogas bar, (21) 
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where 𝑝gas,𝐻2
, 𝑝gas,𝐶𝐻4

and 𝑝gas,𝐶𝑂2
 are the partial pressures of hydrogen, methane and carbon dioxide 

respectively, 𝑆gas,H2
, 𝑆gas,CH4

and 𝑆gas,CO2
 are the concentrations of hydrogen, methane and carbon dioxide 

respectively, R is the universal perfect gas constant and Tbiogas is the temperature of the biogas. The partial 

pressure of watervapour is calculated by: 

𝑝gas,H2O = 0.0313exp(𝑇biogas − 298 298𝑇biogas⁄ ) bar, (22) 

where 𝑝gas,H2O is the partial pressure of water vapour and Tbiogas is the temperature of the biogas. The molar 

mass of biogas (Mgas) is required to calculated the density of biogas and is given by: 

𝑀gas

= (𝑀𝐶𝐻4
𝑝gas,CH4

+ 𝑀𝐶𝑂2
𝑝gas,𝐶𝑂2

+  𝑀𝐻2 
𝑝gas,H2

+  𝑀𝐻2𝑂 𝑝gas,H2O) 𝑃gas⁄  
kg/

mol, 

(23) 

where 𝑀gas is the molar mass of biogas, 𝑀𝐶𝐻4
, 𝑀𝐶𝑂2

, 𝑀𝐻2 
and 𝑀𝐻2𝑂  are the molar masses of methane, carbon 

dioxide, hydrogen and water vapour respectively, 𝑝gas,CH4
, 𝑝gas,𝐶𝑂2

, 𝑝gas,H2
and  𝑝gas,H2O are the partial 

pressures of methane, carbon dioxide, hydrogen and water vapour respectively, and Pgas is the pressure of the 

biogas. The second input required for calculation of the torque output is the air-fuel ratio of biogas. This is 

calculated by: 

𝐴𝐹 = 2.38(4𝑝gas,CH4
+ 𝑝gas,H2

) 𝑀air 𝑃gas𝑀gas⁄  (24) 

where AF is the air-fuel ratio of biogas, 𝑝gas,CH4
 is the partial pressure of methane, 𝑝gas,H2

 is the partial 

pressure of hydrogen, Mair is the molar mass of a standard composition of dry air, Pgas is the pressure of biogas 

and Mgas is the molar mass of biogas. The third input required for the calculation of the output torque, the LHV 

of the biogas is determined from the heat of combustion of the reactants in the digester: 

𝐿𝐻𝑉gas = (ℎ𝑟𝑝𝑜 + ∆𝐻p − ∆𝐻𝑔𝑎𝑠 − ∆𝐻𝑎𝑖𝑟) 𝑀gas⁄  kJ/kg, (25) 

where LHVgas is the Lower Heating Value of the biogas, hrpo is the total heat of combustion of the gases at 

standard conditions, ΔHp is the enthalpy change of the manure from standard temperature to the operating 

temperature of the digester, ΔHgas is the enthalpy change of the biogas from standard temperature to the 

temperature of the biogas, ΔHair is the enthalpy change of air from standard temperature to the operating 

temperature of the digester and Mgas is the molar mass of the biogas. The total heat of combustion of the gases 

at standard conditions, hrpo is given by: 

ℎ𝑟𝑝𝑜

= ((𝑝gas,CH4
+ 𝑝gas,CO2

)ℎ𝑓𝑜𝐶𝑂2
+ (2𝑝gas,𝐶𝐻4

+ 𝑝gas,H2𝑜 + 𝑝gas,H2
)ℎ𝑓𝑜𝐻2𝑜 − (𝑝gas,CH4

ℎ𝑓𝑜𝐶𝐻4
+ 𝑝gas,CO2

ℎ𝑓𝑜𝐶𝑂2
+ 𝑝gas,H2𝑂ℎ𝑓𝑜𝐻2𝑂)) 𝑃gas⁄  

k

J/mol, 

(26) 

where hrpo is the total heat of combustion of the gases at standard conditions, 𝑝gas,CH4
, 𝑝gas,CO2

, 𝑝gas,H2𝑜  and 

𝑝gas,H2
 are the partial pressures of methane, carbon dioxide, water vapour and hydrogen respectively, ℎ𝑓𝑜𝐶𝑂2

,  

ℎ𝑓𝑜𝐻2𝑜 and ℎ𝑓𝑜𝐶𝐻4
 are the heats of combustion of carbon dioxide, water vapour and methane respectively, and 

Pgas is the pressure of biogas. 

Internal Combustion Engine 

An engine-generator set comprises of an internal combustion engine coupled to an induction machine. The 

internal combustion engine produces a torque as a result of combustion of biogas. The torque is applied to the 

induction machine to generate electric power. The power rating of the induction machine has to be matched to 

that of the internal combustion engine. The internal combustion engine model is obtained from the ADVISOR 

software [35-37]. The internal combustion engine model used is based on the Advanced Vehicle Simulator fuel 

converter for the John Deere natural gas fuelled engine. The software has fuel use maps obtained from 

experimental work. The software uses the Newton-Raphson method and a two dimensional linear interpolation  
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function, to calculate the torque output of the internal combustion engine: 

𝑇𝐿,𝑛+1 =  𝑇𝐿,𝑛 −
𝑓𝐼𝐶𝐸(𝑇𝐿,𝑛)

𝑓𝐼𝐶𝐸′(𝑇𝐿,𝑛)
         Nm, 

(27) 

𝑓𝐼𝐶𝐸(𝑇𝐿,𝑛) =
𝑚gas𝐿𝐻𝑉gas

𝜔𝑚𝑒𝑐ℎ
𝑓interp(𝑓𝑐map_trq, 𝑓𝑐map_spd, 𝑓𝑐map_bte, 𝑇𝐿,𝑛, 𝜔𝑚𝑒𝑐ℎ) Nm, (28) 

where TL is the torque output of the internal combustion engine, fICE' is the derivative of the function (28), mgas 

is the mass flow rate of biogas, LHVgas is the LHV of biogas, ωmech is the speed of the internal combustion 

engine, fcmap_trq is the torque range of the internal combustion engine, fcmap_spd is the speed range of the internal 

combustion engine and fcmap_bte is the fuel use map of the internal combustion engine in terms of brake thermal 

efficiency. ADVISOR sofware specifies the maximum torque for different engine speeds for a given engine 

rating. To match the power rating of the internal combustion engine to that of the induction machine, the 

maximum torque specified in the ADVISOR software is changed. It is changed to the torque required to 

produce the rated power of the induction machine. The ADVISOR software then uses interpolation to redefine 

the torque scale based on the new maximum torque specified. Torque output is then obtained from 

interpolation of mass flow rate, LHV, air-fuel ratio of biogas and engine speed, on the redefined torque scale. 

The torque output is used by the induction machine model to calculate the electricity output. 

Exhaust gases are generated as a result of combustion of biogas in the internal combustion engine. The heat 

from the exhaust gases is captured by a heat exchanger and contributes to the total heat output of the biomass 

waste to energy conversion technology. The mass flow rate and temperature of the exhaust gases are required 

to calculate the heat captured by the heat exchanger. The mass flow rate and the temperature of the exhaust 

gases are calculated by: 

𝑚𝑒𝑥ℎ =  𝑚gas(1 + 𝐴𝐹) kg/s, (29) 

𝑇exh = (𝑚gas𝐿𝐻𝑉gas − 𝑇𝐿𝜔𝑚𝑒𝑐ℎ) 𝑚exh𝑐𝑝exh⁄ + 𝑇amb K, (30) 

where mexh is the mass flow rate of the exhaust gases, mgas is the mass flow rate of the biogas, AF is the air-fuel 

ratio of the biogas. Texh is the temperature of the exhaust gases, LHVgas is the LHV of the biogas, TL is the 

output torque, ωmech is the speed of the internal combustion engine cpexh is the specific heat capacity of the 

exhaust gases and Tamb is the ambient temperature. 

Induction Machine 

The induction machine was modeled in the dq (direct-quadrature) synchronous reference frame [38,39] and 

was based on the transient model of the induction machine shown in Figure 4. The dq currents isd, isq, ird and irq 

are used as state variables and the 

 

Figure 4: Induction Machine Equivalent Circuit Model 
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flux linkages are expressed in terms of these state variables. Power input is calculated by: 

𝑣𝑠𝑑 = 𝑅𝑠𝑖𝑠𝑑 − 𝜔𝑑(𝐿𝑠𝑖𝑠𝑞 + 𝐿𝑚𝑖𝑟𝑞) + 𝐿𝑚

𝑑𝑖𝑟𝑑

𝑑𝑡
+ 𝐿𝑠

𝑑𝑖𝑠𝑑

𝑑𝑡
 

V, (31) 

𝑣𝑠𝑞 = 𝑅𝑠𝑖𝑠𝑞 − 𝜔𝑑(𝐿𝑠𝑖𝑠𝑑 + 𝐿𝑚𝑖𝑟𝑑) + 𝐿𝑚

𝑑𝑖𝑟𝑞

𝑑𝑡
+ 𝐿𝑠

𝑑𝑖𝑠𝑞

𝑑𝑡
 

V, (32) 

𝑣𝑟𝑑 = 𝑅𝑟𝑖𝑟𝑑 − 𝜔𝑑𝐴(𝐿𝑚𝑖𝑠𝑞 + 𝐿𝑟𝑖𝑟𝑞) + 𝐿𝑚

𝑑𝑖𝑠𝑑

𝑑𝑡
+ 𝐿𝑟

𝑑𝑖𝑟𝑞

𝑑𝑡
 

V, (33) 

𝑣𝑟𝑞 = 𝑅𝑟𝑖𝑟𝑞 − 𝜔𝑑𝐴(𝐿𝑚𝑖𝑠𝑑 + 𝐿𝑟𝑖𝑟𝑑) + 𝐿𝑚

𝑑𝑖𝑠𝑞

𝑑𝑡
+ 𝐿𝑟

𝑑𝑖𝑟𝑞

𝑑𝑡
 

V, (34) 

𝐿𝑠 = 𝐿𝑙𝑠 + 𝐿𝑚 H, (35) 

𝐿𝑟 = 𝐿𝑙𝑟 + 𝐿𝑚 H, (36) 

𝜔𝑑𝐴 = 𝜔𝑑 − 𝜔𝑚 rad/s, (37) 

𝜔𝑚 = (𝑃 2⁄ )𝜔𝑚𝑒𝑐ℎ rad/s, (38) 

𝑇𝑒𝑚 = (3 2⁄ )(𝑃 2⁄ )𝐿𝑚(𝑖𝑠𝑞𝑖𝑟𝑑 − 𝑖𝑠𝑑𝑖𝑟𝑞) Nm, (39) 

𝑑𝜔𝑚𝑒𝑐ℎ

𝑑𝑡
= (𝑇𝑒𝑚 − 𝑇𝐿) 𝐽𝑒𝑞⁄  

rad/s2, (40) 

𝑃𝑚𝑒𝑐ℎ = 𝑣𝑠𝑑𝑖𝑑𝑠 + 𝑣𝑠𝑞𝑖𝑠𝑞 W, (41) 

where vsd, vsq, vrd and vrq are dq voltages, isd, isq, ird and irq are dq currents, ωd is the instantaneous speed of the 

dq winding, ωdA is the instantaneous speed of the dq winding with respect to the rotor axis, ωm is the rotor 

speed, ωmech is the mechanical speed of the induction machine, P is the number of poles of the induction 

machine, Tem is the electromagnetic torque, TL is the load torque, Pmech is the input power of the induction 

machine, Rs is the stator winding resistance, Rr is the rotor winding resistance, Lls is the stator leakage 

inductance, Llr is the rotor leakage inductance, Lm is stator magnetizing reactance and Jeq is the rotor inertia. 

The load torque TL is the torque output of the internal combustion engine. 

Heat Exchanger 

The exhaust heat captured by the heat exchanger is calculated by [40,41]: 

𝑄HEX = 𝜂HEX𝑚exh𝑐𝑝exh(𝑇exh − 𝑇water) W, (42) 

where QHEX is the heat from the heat exchanger, ηHEX is the efficiency of the heat exchanger, mexh is the mass 

flow rate of the exhaust gases, cpexh is the specific heat capacity of the exhaust gases, Texh is the temperature of 

the exhaust gases and Twater is the temperature of the water in the heat exchanger. 

Boiler 

It is assumed that a dual fuel boiler is used. The heat output of the boiler is obtained by [42]: 

𝑄boiler = (𝑚propane𝐿𝐻𝑉propane + 𝑚gas𝐿𝐻𝑉gas)𝜂boiler W, (43) 

where Qboiler is the heat output of the boiler, mpropane is the mass flow rate of propane, LHVpropane is the LHV of 

propane, mgas is the mass flow rate of biogas, LHVgas is the LHV of biogas and ηboiler is the efficiency of the  
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boiler. 

The boiler rating is calculated by: 

𝑏𝑟 = max
𝑑ℎ

(𝑑ℎ
𝑚) − 𝑄HEX

𝑚 + 𝛿b  for 𝑚 ∈ 𝑀 W, (44) 

where br is the boiler rating, 𝑑ℎ
𝑚 is the heating demand, 𝑄HEX

𝑚  is the heat exchanger output, 𝛿b  is an allowance 

for the boiler rating and M is a set of months comprising the optimisation. 

Limitations and Future Research Directions 

Limited Scope of Waste Stream Variability: The ADM1 model, as implemented, is calibrated primarily for 

specific waste types such as dairy manure. This restricts its applicability across a broader range of waste 

streams (e.g., food waste, agricultural residues, municipal solid waste) without significant recalibration. Future 

research should focus on expanding the model’s flexibility by incorporating machine learning techniques or 

adaptive parameter estimation methods to generalize it for diverse waste compositions. 

Simplified Engine and Generator Modeling: The internal combustion engine model relies on predefined fuel 

maps and uses interpolation for torque estimation, which may not account for real-time fluctuations in biogas 

composition or engine wear over time. Additionally, the induction generator model assumes idealized 

operating conditions. Future work could explore integrating real-time control algorithms and dynamic response 

models that adjust for gas quality variations and aging effects of mechanical components. 

Static Operating Conditions and Absence of Control Technologies: The model assumes steady-state or 

quasi-steady operation for components like the digester, engine, and heat exchanger, which may not reflect 

real-world operating scenarios involving disturbances, startup/shutdown cycles, or environmental fluctuations 

(e.g., temperature). Improving model robustness through the incorporation of dynamic control strategies, fault 

detection algorithms, and seasonal variability modeling would enhance its predictive accuracy and reliability 

under varying field conditions. 

CONCLUSION 

This study presented a comprehensive mathematical modeling framework for a biomass waste-to-energy 

conversion technology, focusing on the anaerobic digestion of manure using the ADM1 model. The model 

accurately simulates the biochemical processes involved in anaerobic digestion and integrates key technology 

components, including the internal combustion engine, induction generator, heat exchanger, and boiler. By 

linking biogas production to energy outputs such as electricity and heat, the model provides valuable insights 

into technology performance and energy recovery potential. 

The ADM1 model, enhanced for dairy manure applications, serves as a robust foundation for predicting biogas 

yields based on the chemical and physical characteristics of the waste. Additionally, the integration of engine 

and generator models facilitates the estimation of mechanical and electrical outputs, contributing to technology 

design and optimization efforts. 

However, the modeling approach assumes steady-state conditions, specific waste inputs, and idealized 

equipment behavior. Future research should aim to improve model adaptability to different waste types, 

incorporate dynamic operating conditions, and implement real-time control strategies for enhanced technology 

reliability and efficiency. 

In conclusion, this work lays the groundwork for advanced simulations and optimization of waste-to-energy 

technology, promoting sustainable energy recovery from organic waste streams. 
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