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ABSTRACT 

Drying kinetics modeling is critical in optimizing drying processes for biomaterials and wastes, ensuring 

energy efficiency and product quality. This review provides a comprehensive synthesis of the major modeling 

approaches applied to drying kinetics, encompassing empirical, semi-theoretical, and theoretical models. 

Influencing factors such as moisture content, air velocity, temperature, and material structure are discussed. 

The review further examines modeling techniques specific to agricultural residues, food products, and animal 

wastes, highlighting the integration of traditional models with modern computational approaches, including 

artificial intelligence and computational fluid dynamics. Model selection criteria and current research gaps are 

analyzed, emphasizing the development of adaptive, material-specific models and the integration of real-time 

monitoring tools. The insights presented aim to guide future research and industrial applications in the 

valorization of organic wastes and sustainable drying system development. 

Keywords: Drying kinetics, Biomaterials, Modeling, Waste valorization, Artificial intelligence 

INTRODUCTION  

Drying is an age-long practice of reducing or removal of moisture from a product in other to stop or retard the 

microbial reactions that may degrade, or decompose the product (Chauhan et al., 2015; Ahmad et al.,2022). 

Drying of agricultural products elongates their shelf life, enabling its storage and preservation for an extended 

time without decomposition. Drying is essential for preserving biomaterials and converting waste into value-

added products. Effective drying reduces moisture content, and minimizes transportation costs. Modeling the 

drying kinetics of biomaterials is vital for optimizing drying equipment and enhancing process efficiency. 

Biomaterials, such as agricultural residues and food waste, display complex moisture diffusion behaviors due 

to their heterogeneous composition, necessitating robust and accurate models. This review outlines existing 

drying models, evaluates their applications, and highlights current research directions. 

Mathematical modeling of drying Kinetics 

Drying kinetic models are commonly used to estimate drying times of agricultural products during drying. 

Drying models simply mean a predictive mathematical relationship between the moisture content expressed as 

moisture ratio and time. Drying kinetics are affected by ambient temperature, air velocity, and material 

properties (Doymaz and Pala, 2003). Predicting the drying time is critical for boosting drier capacity and 

optimization or control of the operating conditions during drying (Inyang et al., 2018). In mathematical 

modelling of drying curve characteristics, the thin layer and equilibrium moisture content models are applied. 

Mathematical modelling of thin layer drying is important for optimization of operating parameters and 

performance improvements of the drying systems (Cihan et al., 2007). Thin layer drying models used for 
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modelling the drying phenomenon of agricultural materials are classified into three categories, namely: 

theoretical, semi-theoretical, and empirical (Afzal and Abe, 2000, Panchariya et al., 2002; Akpinar and Bicer, 

2005; Akpinar, 2006). The theoretical approach is concerned with diffusion or simultaneous heat and mass 

transfer equations. The semi-theoretical models approach is concerned with approximated theoretical equations 

(Afzal and Abe, 2000; Akpinar and Bicer, 2005). Simplifying the general series solution of Fick’s second law 

or the modification of simplified models generally derives semi-theoretical models. But they are only valid 

within the temperature, relative humidity, airflow velocity and moisture content range for which they were 

developed. They require small time compared to theoretical thin layer models and do not need assumptions of 

the geometry of a typical food, its mass diffusivity and conductivity (Parry, 1985). Nevertheless, the semi-

theoretical equations have been successfully applied by many researchers to describe drying rates for various 

agricultural products. In this category, Henderson and Pabis model, Page model, and Lewis model is 

extensively utilized by researchers. Empirical models establish a direct relationship between average moisture 

content and drying time without regards to the fundamentals of the drying process and their parameters which 

have no physical meaning. Though it is easy to apply the empirical models in drying simulations but they 

cannot give clear accurate view of the important processes that takes place during drying although they may 

describe the drying curve for the conditions of the experiments (Afzal and Abe, 2000; Akpinar and Bicer, 

2005). Thin layer equations describe the drying phenomena in a unified way regardless of the controlling 

mechanism. They have been used to estimate drying times of biological products and to generalize drying 

processes. Recent studies incorporate Computational Fluid Dynamics (CFD) for multiphase drying simulations 

(Norton & Sun, 2006) and Artificial Neural Networks (ANN) for nonlinear drying behavior prediction (Kumar 

et al., 2020) as advanced and hybrid drying models for the prediction of drying time in drying of both bio 

materials and non-bio materials as long as there are sufficient data collection for the machine learning 

algorithm  

Factors Affecting Drying Kinetics  

A complex interplay of physical, environmental, and process-related factors influences the drying kinetics of 

biomaterials. One of the most critical parameters is the initial moisture content, which determines the duration 

of the constant-rate and falling-rate drying periods, depending on the extent to which water is free or bound 

within the material's cellular matrix (Mayor & Sereno, 2004; Lewicki, 2006). Drying temperature also plays a 

pivotal role by enhancing the vapor pressure gradient and reducing water viscosity, thereby accelerating 

moisture migration; however, excessively high temperatures may lead to shrinkage, degradation, or case 

hardening (Kumar et al., 2014; Mujumdar, 2014). Environmental conditions such as relative humidity and air 

velocity directly influence the drying rate. Lower humidity levels improve the vapor pressure differential and 

increase the drying potential, while higher air velocity helps remove the saturated boundary layer from the 

material surface, promoting convective mass transfer (Sharma et al., 2009; Henderson et al., 2000). 

Additionally, the physical characteristics of the material, including thickness, porosity, cellular structure, and 

surface area-to-volume ratio, significantly impact internal moisture diffusion; denser or thicker materials tend 

to dry more slowly (Zogzas et al., 1996). Other parameters affecting the drying kinetics are pre-treatment 

techniques, such as blanching, ultrasonic treatment, and osmotic dehydration, which can modify the structural 

integrity of biomaterials, enhancing or impeding moisture diffusivity. For instance, ultrasound creates micro 

channels that facilitate water migration during drying (Nowacka et al., 2012). The drying method and energy 

source used (convective, solar, infrared, microwave, or freeze-drying etc) also impact the drying behavior by 

influencing heat transfer mechanisms and moisture removal efficiency (Ratti, 2001; Esper & Mühlbauer, 

1998). The drying process is often described using semi-empirical or theoretical models, which rely on 

parameters such as effective diffusivity, drying rate constants, and activation energy—all of which are 

sensitive to the aforementioned variables (Midilli et al., 2002). A thorough understanding and integration of 

these factors are essential for optimizing drying processes and developing accurate predictive models. 

Bio Materials and Corresponding Thin Layer Drying Kinetics Models  

Many bio materials have been dried, and their thin-layer drying kinetics modeled. Details of the thin layer 

models and their corresponding equations are presented in Table 1, while Table 2 displays the thin layer 

models used to predict moisture content and the related agricultural products.  
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Table .1: Table of thin layer drying models 

S/N  Name of Model Model Equation Reference 

1 Lewis Model MR = exp (-kt). (Kashaninejad et al. 2005; Vijayaraj et al., 2007) 

2 Logarithmic Model  MR = a exp (-kt) + c (Erbay and Icier, 2009) 

3 Page Model MR= exp (ktn). (Kahveci and Cihan, 2008; Doymaz and Ismail, 

2011) 

4 Modified Page Model I MR= exp [(-k t)n]  (Al-Mahasneh et al., 2007 

5 Modified Page Model II MR =exp [-(k t)n]  (Akpinar, 2006a ;Lemus-Mondaca et al., 2009) 

6 Modified Page Model III MR =exp [-(-k t)n]   (Falade and Solademi, 2010) 

7 Modified Page Model IV MR = a exp[-(ktn)] (Babalis et al., 2006)  

8 Modified Page Model V MR = exp[-(ktn)]  (Jazini and Hatamipour, 2010)  

9 Modified Page Model VI MR = exp(ktn) (Kurozawa et al., 2012)  

10 Modified Page Model VII MR = exp[-k(t/L2)n]   (Artnaseaw et al., 2010a), 

11 Modified Page Model VIII MR = exp {-[k(t/L2)n]} (Pardeshi and Chattopadhyay, 2010) 

12 Modified Page Model IX MR = k exp [(-t/L2)n] (Kumar et al., 2006)  

13 Simplified Fick Model MR = k exp [-c(t/L2)]  (Gunhan et al., 2005) 

14 Henderson Pabis MR = 1-exp[-(ktn)] (Shittu and Raji, 2011) 

15 Modified Henderson Pabis 

I 

MR = a exp (-kot) + b 

exp(-k1t) + c exp(-k2t). 

(Erbay and Icier, 2009) 

16 Modified Henderson Pabis 

II 

MR = a exp (-ktn) + b 

exp(-gt) + c exp(-ht). 

(Corzo et al., 2011) 

17  Otsura et al., Model  MR = 1-exp[-(ktn)] (Otsura et al., 1975 from Chen and Wu, 2001) 

18 Midilli Kucuk Model MR= a exp (-ktn)+ bt  (Ghazanfari et al., 2006a; Midilli et al., 2002) 

19 Wang and Singh Model MR =1 + at+ bt2     Kadam and Dhingra, 2011; Akpinar, 2011 

20 Thompson Model t = a ln(MR) + b 

[ln(MR)]2 

Thompson et al.,1968 

Table 2. Thin layer models and their corresponding agricultural biomaterials 

S/N MODELS REFERENCES 

1 Lewis model strawberry (El-Beltagy et al., 2007), red chilli (Hossain et al., 2007), grape seeds 

(Roberts et al., 2008) and black tea (Panchariya et al., 2002). 

2 Page Model tomato (Doymaz, 2007a), wheat (Rafiee et al., 2008), dates (Hassan and Hobani, 

2000) and barberries (Aghbashlo et al., 2007).  
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3 Modified Page I sesame hull (Al-Mahasneh et al., 2007)  

4 Modified Page II mint and basil leaves (Akpinar, 2006a), aloe vera (Vega et al., 2007), papaya 

(Lemus-Mondaca et al., 2009)  

5 Modified Page III sweet potato slices (Falade and Solademi, 2010) 

6 Modified Page IV figs (Babalis et al., 2006) 

7 Modified Page V Plums (Jazini and Hatamipour, 2010) 

8 Modified Page VI mushrooms (Kurozawa et al., 2012) 

9 Modified Page VII red beet (Kaleta and Gornicki, 2010), jujube (Fang et al., 2009) and black grape 

(Togrul, 2010) 

10 Modified Page VIII soy-fortified wheat based ready to eat snacks (Pardeshi and Chattopadhyay, 

2010)  

11 Modified Page IX  onion slices (Kumar et al., 2006) 

12 Otsura et al Model rough rice (Otsura et al., 1975 from Chen and Wu, 2001); 

13 Simplified Ficks 

Model 

bay leaves (Gunhan et al., 2005), apricot (Togrul and Pehlivan, 2003), and apple 

(Togrul, 2005). 

14 Henderson and 

Pabis 

African breadfruit seed (Shittu and Raji, 2011), banana, mango, and cassava 

(Koua et al., 2009), and onion (Sawhney et al., 1999). 

15 Henderson and 

Pabis I 

pistachio (Aktas and Polat, 2007), kiwifruit (Doymaz, 2009a), and coconut 

(Madhiyanon et al., 2009)  

16 Logarithmic Model green bell pepper (Doymaz and Ismail, 2010), pineapple (Kingsly et al., 2009), 

peach (Kingsly et al., 2007), bar bunya bean (Kayisoglu and Ertekin, 2011), and 

white mulberry (Doymaz, 2004a).  

17 Midilli et al., 

Model 

savory leaves (Arslan and Ozcan, 2012), purslane (Demirhan and Ozbek, 2010a), 

and eggplant (Ertekin and Yaldiz, 2004). 

Advances in Drying Kinetics Modeling 

AI and Machine Learning 

Artificial Intelligence (AI) and Machine Learning (ML) have increasingly been applied to drying kinetics 

modeling to overcome the limitations of traditional physics-based methods, offering accurate predictions of 

moisture content, drying rates, and process optimization without explicitly solving complex differential 

equations (Shan et al., 2020; Tosun et al., 2022). Techniques such as artificial neural networks (ANN), support 

vector machines (SVM), and genetic algorithms (GA) have been widely used to model non-linear relationships 

in drying data, showing high predictive performance across various biomaterials (Erbay & Icier, 2010; 

Golpour et al., 2015). Furthermore, hybrid models that integrate ML with first-principles approaches are 

emerging, enhancing model generalization and interpretability (Chen et al., 2021). The use of deep learning 

and real-time sensor data also enables adaptive control and intelligent optimization of drying systems, paving 

the way for smart, automated drying technologies (Tosun et al., 2022). A compilation of the applications of AI 

and machine learning in modeling drying kinetics of agricultural products is shown in Table 3. 
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Table:3 Applications of AI and Machine Learning in Modeling Drying Kinetics of Agricultural Products 

S/N Agricultural Product AI/ML Method Key Findings Reference 

1 Carrot Slices Artificial Neural 

Networks (ANN) 

ANN provided higher prediction 

accuracy of the moisture ratio compared 

to traditional thin-layer models. 

Kaya et al., 

2008  

2 Tomato Slices Support Vector 

Machines (SVM), 

ANN 

SVM and ANN accurately predicted 

moisture content during drying; SVM 

showed superior generalization. 

Kalantari & 

Azizi, 2017 

3 Banana Adaptive Neuro-

Fuzzy Inference 

System (ANFIS) 

ANFIS accurately predicted moisture 

content and drying rate; it outperformed 

RSM models. 

Jangam & 

Thorat, 2010  

4 Apple Slices Random Forest 

Regression 

RF model combined with image 

processing accurately predicted 

moisture content non-destructively. 

Pan et al., 

2015  

5 Sweet Potatoes Deep Learning 

(CNN) 

CNN-based image analysis enabled 

real-time drying stage classification and 

moisture prediction. 

Zhang et al., 

2021 

Computational Fluid Dynamics (CFD) 

CFD simulation models are based on heat and mass transfer for optimization of dryer geometry and the drying 

processes using the Navier–Stokes equations as the governing equations, Energy, continuity, and momentum 

equations (Ahmad et al., 2023; Mellalou et al.,2021; Rouissi et al., 2021) 

Computational Fluid Dynamics (CFD) has become a vital tool in drying kinetics modeling, enabling detailed 

simulation of heat and mass transfer, airflow distribution, and moisture evolution in drying systems with 

spatial and temporal resolution that traditional models often lack (Younis et al., 2017; Ratti, 2001). By solving 

the Navier–Stokes, energy, and species transport equations, CFD helps in analyzing complex geometries, 

optimizing dryer design, and improving energy efficiency and product quality (Nathakaranakule et al., 2007; 

Karim & Hawlader, 2005). CFD also facilitates the study of coupled phenomena such as shrinkage, phase 

change, and turbulence effects during drying, especially in porous media (Kumar & Prasad, 2007). Integrating 

CFD with experimental data and advanced modeling approaches like multiphysics and AI further enhances its 

predictive power and practical applicability (Tosun et al., 2022). 

Multiscale and Multi-Physics Modeling 

Multiscale and multi-physics modeling provides a comprehensive framework for understanding drying kinetics 

by integrating phenomena from cellular-scale moisture transport to bulk-level heat and mass transfer 

(Waananen & Okos, 1996; Zhang et al., 2014). These models couple thermal, mass, and structural dynamics to 

simulate the complex interactions that occur during drying, especially in porous biomaterials (Cai & Chen, 

2008; Shan et al., 2020). Numerical techniques such as finite element analysis and computational fluid 

dynamics, often implemented in platforms like COMSOL and ANSYS, enable flexible, multi-physics 

simulation environments (Younis et al., 2017). Despite their promise, challenges remain regarding 

computational load, multiscale parameter estimation, and experimental validation, though recent advances in 

image-based modeling and machine learning are helping to address these issues (Tosun et al., 2022). Table 4 

compiles some examples of multiscale and multi-physics modeling approaches used to analyze the drying 

kinetics of agricultural products. 
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Table 4. Table of multiscale and multi-physics modeling approaches used to analyze the drying kinetics of 

agricultural products, 

S/N Agricultural 

Product 

Method of study Key Features References 

1 Apple FEM, multiscale Cell deformation + tissue drying Wang et al. (2019) 

2 Grape COMSOL Multi 

physics 

Coupled heat/mass, shrinkage Lahsasni & Kouhila (2016) 

3 Tomato Pore-network, 

multiscale 

Microscale diffusion & shrinkage Li et al. (2020) 

4 Maize CFD-DEM Granular dynamics + heat transfer Saberi & Ghasemi (2021) 

Model Selection and Evaluation Criteria  

Graphical and statistical analyses are always used to validate and select the best-fitted models in kinetics 

modeling. The key performance metrics for determining the model of best fit (goodness of fit) are; 

Mean Relative Error. (MRE) 

The models with Mean relative error (MRE) values below or equal to 10% are usually considered as a good fit 

(Simal et al., 2005). It is given as equation (1) 

𝑀𝑅𝐸(%) =
100

𝑁
∑ ⌊

𝑋𝑒𝑥𝑝,𝑖−𝑋𝑝𝑟𝑒𝑑,𝑖

𝑋𝑒𝑥𝑝,𝑖
⌋𝑁

𝑖=1         (1) 

Coefficient of Determination (R2) 

The coefficient of determination (R²) is the square of the correlation coefficient, quantifying the proportion of 

variance in the dependent variable that can be explained by the independent variable. R² values range from 0 to 

1; a value of 0 indicates no explained variance, while a value of 1 signifies that the model accounts for all 

variance in the dependent variable. Typically, the model with the highest coefficient of determination (R²) and 

a low root mean square error (RMSE) (Demir et al., 2004) is selected as the best-fitting model. 

It is given as R2 and expressed as equation (2) 

R2 = 1−
∑(𝑋𝑒𝑥𝑝−𝑋𝑝𝑟𝑒𝑑)2

∑(𝑋𝑒𝑥𝑝−𝑋𝑎𝑣𝑔 𝑒𝑥𝑝)2         (2) 

where 

Yobv. is the experimental value 

Ypred is the predicted value 

Yavg  is the average of the observed values 

Average Absolute Difference (AAD), 

The Average Absolute Difference (AAD), also known as Mean Absolute Error (MAE), provides a measure of 

how far off the predictions were from the actual values, on average. This metric quantifies and compares the 

average magnitude of errors between the values predicted by the models and the actual values. It is given as 

equation (3) 

https://rsisinternational.org/journals/ijrias
https://rsisinternational.org/journals/ijrias
http://www.rsisinternational.org/


INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN APPLIED SCIENCE (IJRIAS) 

ISSN No. 2454-6194 | DOI: 10.51584/IJRIAS |Volume X Issue V May 2025 

 

 

 

 

 

www.rsisinternational.org 
Page 960 

 

   

 

𝐴𝐴𝐷 =
1

𝑁
∑ ⌊𝑋𝑒𝑥𝑝,𝑖 − 𝑋𝑝𝑟𝑒𝑑,𝑖⌋𝑁

𝑖=1         (3) 

Root Mean Square Error 

Root mean square error (RMSE) or sometimes referred to as root mean square deviation (RMSD) is derived 

by squaring the differences between the sum of the experimental value of the moisture ratio and the predicted 

value, dividing that by the number of test points, and then taking the square root of that result.  

𝑅𝑀𝑆𝐸 = √∑ (𝑋𝑒𝑥𝑝,𝑖−𝑋𝑝𝑟𝑒𝑑𝑖)2𝑁
𝑖=1

𝑁
       (4) 

RMSE = root mean square error 

I = variables 

N = Number of data points 

X exp,i = mean experimental moisture ratio 

X pred,i = mean predicted moisture ratio 

Mean Absolute Error (MAE) 

The mean absolute error is defined as the ratio of the absolute error of the predicted to the actual value. Using 

this method, one can determine the magnitude of the absolute error in terms of the actual size of the 

observations. Mean absolute error, MAE, is a quantity used to measure how close forecasts or predictions are 

to the eventual outcomes. The mean absolute error is given by (Tripathy and Kumar, 2008; Mota et al., 2010)  

The mean absolute error (MAE) is given as equation (5) 

MAE =   
1

𝑛
∑ [𝑒𝑥𝑝𝑖 − 𝑝𝑟𝑒𝑑]𝑛

𝑖=1         (5) 

Where: 

n is the number of data points or observations. 

Σ denotes the summation symbol. 

exp,i is the actual experimental value 

pred,i is the predicted value  

|Actual - Predicted| represents the absolute difference between the actual value and the predicted value for each 

data point. 

Chi-Square (χ²) test  

The Chi-Square (χ²) test measures how close your model’s predictions are to the experimental (actual) data 

points. It does this by squaring the difference between predicted and actual values and summing them up. The 

smaller the result, the better your model is at matching the real data. It is given as equation (6) by Ertekin, C., 

& Yaldiz, O. (2004).  

𝜒2 = ∑
(𝑋𝑒𝑥𝑝.𝑖−𝑋𝑝𝑟𝑒𝑑.𝑖)

2

𝑋𝑝𝑟𝑒𝑑.𝑖

𝑁
𝑖=1          (6) 
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It can be normalized depending on the parameters being evaluated (goodness of fit or relative error per degree 

of freedom) and the type of data being analyzed. The normalized chi-square is given as equation (7)  

𝜒2 =
1

𝑁−𝑛
∑ (𝑋𝑒𝑥𝑝, 𝑖 − 𝑋𝑝𝑟𝑒𝑑, 𝑖)2𝑁

𝑖=1         (7) 

Despite the evaluations of all the model testing criteria, model robustness should be evaluated under varying 

conditions such as temperature, humidity, and material thickness to ensure generalizability. A sensitivity 

analysis of model parameters further aids in understanding the influence of each variable on drying behavior 

(Henderson et al., 1997). 

Research Gaps and Future Directions 

Need for Material-Specific Models 

Generic models often fail to capture the unique drying behaviors of specific biomaterials. There is a need for 

customized models that integrate moisture-binding mechanisms and internal structure changes during drying. 

Integration with Real-Time Monitoring Systems 

The use of sensors and data acquisition systems allows for real-time monitoring of drying parameters. Future 

models should incorporate feedback loops and predictive control systems for dynamic adaptation (Ratti, 2001). 

Climate-Resilient and Energy-Efficient Drying 

Future drying models must support energy-efficient systems that adapt to fluctuating climatic conditions, 

particularly in solar and hybrid drying. 

Open Access Databases and Modeling Platforms 

Collaborative platforms that house experimental data and model parameters are necessary for cross-laboratory 

comparison and development. 

Coupled Modeling Approaches 

Integrating mechanical, thermal, chemical, and biological phenomena into a unified modeling framework—

e.g., drying and microbial inactivation—offers a complete process understanding (Chen et al., 2020). 

CONCLUSION  

Modeling drying kinetics is key for process optimization in bio-material drying. While empirical and semi-

theoretical models are widely used because of their ease of application, advanced computational tools offer 

improved accuracy and adaptability. Emphasis should be placed on creating smart, adaptive systems informed 

by real-time data and tailored to specific biomaterial properties. Further research should be focused on 

advanced computational tools for improved accuracy and adaptability 
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