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ABSTRACT 

We study a pursuit differential game problem involving one pursuer and one evader in a Hilbert space. The 

motion of the pursuer is governed by first-order differential equations, while that of the evader is described by a 

second-order differential equation. The control functions of the pursuer and the evader are subject to integral 

constraints. The pursuit is considered completed if the equality 𝑦(𝜃) = 𝑥(𝜃) is achieved. We formulate and 

prove two theorems that provide sufficient conditions for the completion of pursuit at a given time. 

Keywords: Pursuer, Integral constraint; Differential Game 

INTRODUCTION 

A pursuit differential game problem involves finding conditions that guarantee the completion of the pursuit. 

There are numerous works that deal with pursuit problems, among which are studies involving one pursuer and 

one evader, multiple pursuers and one evader, and even multiple evaders. For many years, differential game 

problems with integral constraints on the control of the players have been a subject of interest (see [2], [3], [5], 

[6], [7], [9], [11], [12], [15]). In some works, mixed constraints on the control of players are considered (see [1], 

[8], [10], [13]). In some of these papers, the motion of the players obeys first-order differential equations (e.g., 

[6], [9], [11]), whereas in others ([1], [2], [3]), the motion of the players obeys first- and second-order differential 

equations. 

In [9], a pursuit differential game problem with a finite number of pursuers and one evader in the space 𝑙2 was 

studied. The players move according to first-order differential equations, and the players’ control functions are 

subject to integral constraints. The authors formulated and proved theorems that establish conditions ensuring 

victory for the pursuers. 

A pursuit differential game problem with integral and geometric constraints was investigated in [8]. Sufficient 

conditions for the completion of pursuit were presented in two distinct theorems. Moreover, attainable domains 

and strategies for the players were also constructed. 

In [1], a simple-motion pursuit differential game involving many pursuers and one evader in the Hilbert space 

𝑙2 was considered. The control functions of the pursuers and evader are subject to integral and geometric 

constraints, respectively. The pursuers’ motions are described by first-order differential equations, while the 

evader’s motion follows a second-order differential equation. The authors constructed strategies for the pursuers 

and derived a condition for the completion of pursuit. 

In this paper, we study a pursuit differential game problem involving one pursuer and one evader in a Hilbert 

space. The motion of the pursuer is governed by a first-order differential equation, and the evader’s motion is 

described by a second-order differential equation. The control functions of the pursuer and evader are subject to 

integral constraints. 

Statement of the Problem 

Consider the Hilbert space 
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𝑙2 = {𝑎 = (𝑎1, 𝑎2, 𝑎3, … ): ∑ 𝑎𝑘
2 < ∞

∞

𝑘=1

}, 

with the inner product and norm defined as follows: 

〈𝑎, 𝑏〉 = ∑ 𝑎𝑘𝑏𝑘 , ‖𝑎‖ =

∞

𝑘=1

(∑ 𝑎𝑘
2

∞

𝑘=1

)

1
2

, 

We define a pursuit differential game problem where motions of the pursuer P and that of an evader E are 

described by the equation 

𝑃: 𝑥̇ = 𝑢(𝑡),   𝑥(0) = 𝑥0 𝑖 ∈ 𝐼  

𝐸: 𝑦̈ = 𝑣(𝑡),   𝑦̇(0) = 𝑦1, 𝑦(0) = 𝑦0 

Where 𝑥, 𝑦, 𝑢, 𝑣 ∈ 𝑙2. Admissible controls satisfy: 

∫ ‖𝑢(𝑠)‖2𝑑𝑠 ≤ 𝜌2,
∞

0

    ∫ ‖𝑣(𝑠)‖2𝑑𝑠 ≤ 𝜎2,
∞

0

 

Definition 1:  A measurable function 𝑢(𝑡) satisfying (2) is an admissible pursuer control. Similarly, 𝑣(𝑡) 

satisfying the evader constraint is admissible. 

Definition 2: A pursuer’s strategy 𝑈(𝑡, 𝑥, 𝑦, 𝑣) is admissible if it generates unique trajectories    𝑥(𝑡), 𝑦(𝑡) ∈
𝐶(0, 𝜃; 𝑙2), for any evader’s control 𝑣(𝑡), with 𝑈 satisfying (2). 

Definition 2: Pursuit is completed if there exist and admissible strategy 𝑈 such that 𝑥(𝜃) =  𝑦(𝜃).  

THE MAIN RESULT    

It is customary that (see, for example [1],[3] [10],[12] and [15]) the initial value problem involving the second 

order differential equation in (1) can be transformed to; 

𝑃: 𝑥̇ = 𝑢(𝑡),   𝑥(0) = 𝑥0   

 𝐸: 𝑦̇ = (𝜃 − 𝑡)𝑣(𝑡),   , 𝑦(0) = 𝑦0 

With solution  

𝑥(𝜃) = 𝑥0 + ∫ 𝑢(𝑡)𝑑𝑡
𝜃

0

 

𝑦(𝜃) = 𝑦0 + ∫ (𝜃 − 𝑡)𝑣(𝑡)𝑑𝑡
𝜃

0

 

The following theorems establish sufficient conditions under which pursuit can be completed in the system 

defined by (1) and (2). 

Theorem 1: If 𝑥0 = 𝑦0 and 𝜃 =
𝜌

𝜎
 then pursuit can be completed in the game described by (1), where controls 𝑢 

and 𝑣 satisfy the inequalities described by (2) 

Proof: 

For the purpose of the proof of this theorem, we define the strategy of pursuer’s as: 

(1) 

(2) 

(3) 
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𝑈(𝑡) = {
(𝜃 − 𝑡)𝑣(𝑡), 𝑡 ∈ [0, 𝜃]
0,                           𝑡 ∈ (0, ∞)

                                                       (4) 

Admissibility (4) follows from: 

∫ ‖𝑈(𝑡)‖2𝑑𝑡 = ∫ (𝜃 − 𝑡)2‖𝑣(𝑡)‖2𝑑𝑡
θ

0

θ

0

 

Now, using the inequality (𝜃 − 𝑡)2 ≤ 𝜃2   ∀𝑡 ∈ [0, 𝜃] to bound the integral yields  

∫ (𝜃 − 𝑡)2‖𝑣(𝑡)‖2𝑑𝑡
θ

0

≤ 𝜃2 ∫ ‖𝑣(𝑡)‖2𝑑𝑡
θ

0

 

And the by evader’s integral constraint we achieve: 

𝜃2 ∫ ‖𝑣(𝑡)‖2𝑑𝑡 ≤
θ

0

𝜃2𝜎2 

Thus, 

∫ ‖𝑣(𝑡)‖2𝑑𝑡 ≤
θ

0

𝜃2𝜎2 = 𝜌2 

Equation 𝑥(𝜃) and 𝑦(𝜃) confirms completion of pursuit i.e. 

𝑥(𝜃) = 𝑥0 + ∫ (𝜃 − 𝑡)𝑣(𝑡)
𝜃

0

𝑑𝑡 = 𝑦0 + ∫ (𝜃 − 𝑡)𝑣(𝑡)
𝜃

0

𝑑𝑡 = 𝑦(𝜃) 

Theorem 1: If 𝑥0 ≠ 𝑦0, 𝜌 > (𝜎𝜃 +
‖𝑦0−𝑥0‖

√𝜃
) and 𝜃 solves: 𝜌 =  

‖𝑦0−𝑥0‖

√𝜃
+ 𝜎𝜃 then pursuit can be completed in 

the game described by (1), where controls 𝑢 and 𝑣 satisfy the inequalities described by (2) 

Proof: 

Define the strategy of the pursuer as follows: 

𝑈(𝑡) = {

 y0 − 𝑥0

𝜃
+ (𝜃 − 𝑡)𝑣(𝑡),                        𝑡 ∈ [0, 𝜃]

0,                                                                𝑡 ∈ (0, ∞)
                               (5) 

By this strategy, we show that pursuit can be completed. 

Hence, 

𝑥(𝜃) = 𝑥0 + ∫ 𝑈(𝑡)
𝜃

0

𝑑𝑡 

= 𝑥0 + ∫ (
 y0 − 𝑥0

𝜃
+ (𝜃 − 𝑡)𝑣(𝑡))

𝜃

0

𝑑𝑡 

= 𝑥0 + ∫
 y0 − 𝑥0

𝜃
𝑑𝑡 + ∫ (𝜃 − 𝑡)𝑣(𝑡)

𝜃

0

𝜃

0

𝑑𝑡 
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= 𝑥0 +
 y0 − 𝑥0

𝜃
∫ 𝑑𝑡 + ∫ (𝜃 − 𝑡)𝑣(𝑡)

𝜃

0

𝜃

0

𝑑𝑡 

= 𝑥0 +
 y0 − 𝑥0

𝜃
∙ 𝜃 + ∫ (𝜃 − 𝑡)𝑣(𝑡)

𝜃

0

𝑑𝑡 

= 𝑥0 +  y0 − 𝑥0 + ∫ (𝜃 − 𝑡)𝑣(𝑡)
𝜃

0

𝑑𝑡 

=  y0 + ∫ (𝜃 − 𝑡)𝑣(𝑡)
𝜃

0

𝑑𝑡 = 𝑦(𝜃) 

Now, we establish the admissibility of the constructed strategy: 

∫ ‖𝑈(𝑡)‖2
𝜃

0

𝑑𝑡 ≤ 2 (
‖ y0 − 𝑥0‖2

𝜃
+ 𝜎2𝜃2) ≤ 𝜌2 

That is,  

‖𝑈(𝑡)‖2 = ‖
 y0 − 𝑥0

𝜃
+ (𝜃 − 𝑡)𝑣(𝑡)‖

2

≤ 2 ‖
 y0 − 𝑥0

𝜃
‖

2

+ 2(𝜃 − 𝑡)2‖𝑣(𝑡)‖2 

Thus,  

∫ ‖𝑈(𝑡)‖2
𝜃

0

𝑑𝑡 ≤ 2 ∫ ‖
 y0 − 𝑥0

𝜃
‖

2𝜃

0

+ 2 ∫ (𝜃 − 𝑡)2
𝜃

0

‖𝑣(𝑡)‖2𝑑𝑡. 

= 2
‖ y0 − 𝑥0‖2

𝜃
+ 2 ∫ (𝜃 − 𝑡)2

𝜃

0

‖𝑣(𝑡)‖2𝑑𝑡. 

Using the evaders constraint and the bound (𝜃 − 𝑡)2 ≤ 𝜃2 ∀𝑡 ∈ [0, 𝜃], yields 

∫ ‖𝑈(𝑡)‖2
𝜃

0

𝑑𝑡 ≤ 2 (
‖ y0 − 𝑥0‖2

𝜃
+ 𝜃2𝜎2) 

Relating this to the pursuer’s constraint, we’ve  

∫ ‖𝑈(𝑡)‖2
𝜃

0

𝑑𝑡 ≤ 2 (
‖ y0 − 𝑥0‖2

𝜃
+ 𝜃2𝜎2) ≤ 𝜌2 

Which complete the prove of the theorem 

Illustrative Examples 

For Theorem 1, we require that the initial position of the pursuer and that of the evader to coincide and choose 

𝜌 = 2, 𝜎 = 3, 𝜃 = 3. Thus (4), becomes    

𝑈(𝑡) = {
(3 − 𝑡)𝑣(𝑡), 𝑡 ∈ [0,3]
0,                           𝑡 ∈ (3, ∞)

          

Admissibility: 

∫ (3 − 𝑡)2‖𝑣(𝑡)‖2
𝜃

0

𝑑𝑡 ≤ 9 ∙ 9 = 81 = 𝜌2 
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For Theorem 2, we require that the initial position of the pursuer and that of the evader to differ i.e. 𝑥0 = 0, 𝑦0 =
(1, 0, … ), 𝜎 = 3, 𝜌 = 10  

Solving 10 =
1

√𝜃
+ 3𝜃 gives 𝜃 ≈ 3 and the strategy’s admissibility is confirmed similarly.  

CONCLUSION 

We studied a differential game problem involving one pursuer and one evader in a Hilbert space. The control 

functions of the pursuer and the evader are subject to integral constraints. The motions of the pursuer and evader 

are governed by first-order and second-order differential equations, respectively. We solved the pursuit problem 

through two theorems by constructing an admissible pursuer strategy. Consequently, we provide an illustrative 

example to demonstrate the obtained results 
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