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ABSTRACT 

Cyclotron damping of Gould –Trivelpiece modes is analysed in this study for a cylindrical plasma column 

containing either SF₆⁻ or K⁺ ions. The study highlights the contrasting roles of ion polarity in mediating wave–

particle interactions that govern damping behaviour. It is observed that negative ions, due to their higher mass 

and weaker cyclotron resonance, result in reduced damping rates of TG modes. Conversely, positive ions enable 

stronger cyclotron coupling, leading to enhanced damping through more effective resonance with the wave field. 

Furthermore, the sensitivity of cyclotron damping rates to plasma electronegativity exhibits opposite trends for 

negative and positive ion plasmas. These findings underscore the critical influence of ion species and plasma 

composition on the propagation and attenuation of electrostatic waves in electronegative plasma columns, with 

implications for wave control and energy dissipation in beam-plasma systems. 

Keywords: Cyclotron damping, Beam–plasma interaction, Wave–particle resonance, Gould –Trivelpiece mode, 

Negative ions (SF₆⁻), Positive ions (K⁺), Electronegativity dependence Plasma wave attenuation. 

INTRODUCTION 

TG waves, often referred to as lower hybrid waves (LHWs), represent electrostatic phenomena that exist in the 

frequency domain lying between the ion plasma and electron cyclotron frequencies. These waves have drawn a 

lot of theoretical and experimental attention across many decades [1–5] due to their effective capability for 

heating and energy absorption from electrons, notably observed near the outer region of the plasma. 

In confined plasmas, Trivelpiece–Gould (TG) waves are typically characterized by short radial wavelengths, 

whereas in unbounded plasmas, they manifest as modes with short azimuthal wavelengths [6]. Praburam and 

Sharma [7] demonstrated that TG waves at higher harmonics can be excited using low-energy electron beams. 

Using the linear Princeton Q-1 device, Seiler et al. [8] investigated the instability of lower hybrid waves (LHWs) 

induced by a spiraling ion beam. Similarly, Chang [9] analysed the dynamics of LHW instabilities resulting from 

the perpendicular injection of ion beams. Sharma et al. [10] explored how a modulated electron beam can excite 

LHWs in a cylindrical plasma configuration. In a related study, Prakash et al. [11] examined LHW generation 

by ion beams and reported that the fastest growth rate of instability occurs when the wave’s phase velocity, 

aligned with the magnetic field, closely matches the electron thermal velocity. 

Recent studies have expanded to include plasmas containing dust grains [12–17]. Both theoretical and 

experimental investigations have been carried out in non-magnetized [12] and weakly magnetized [13] dusty 

plasma environments. Sharma et al. [14] proposed a model in which ion-acoustic waves (IAWs) are excited by 

ion beams within a magnetized dusty plasma cylinder. Kaur et al. explored the excitation of Gould–Trivelpiece 

modes in dusty plasmas due to streaming particles, focusing on instability growth rates and wave–particle 

interactions using a fluid-based approach to describe mode dynamics in the presence of dust. Barkan et al. [16] 

analysed ion-acoustic waves in magnetized dusty plasmas and observed that the wave phase velocity increases 

with a higher number density of dust grains. Additionally, Rosenberg [17], employing Vlasov theory, examined 
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the instabilities associated with dust-ion acoustic and dust-acoustic modes in unmagnetized dusty plasmas. 

Annaratone et al. [18] studied the rotational dynamics of a magnetized plasma in the linear device Mistral. They 

noted that the injected electrons from a central source travel radially outward because of the Lorentz force exerted 

by an axial magnetic field. Bettega et al. [19] carried out experimental studies on ion-driven diocotron 

instabilities in electron plasmas confined within a Malmberg–Penning trap. David [20] offered a comprehensive 

tomographic analysis of linear magnetized plasmas, focusing on the spatial and temporal characterization of 

plasma structures. Dem’yanov et al. [21] conducted a foundational investigation into equilibrium conditions and 

nonlocal ion cyclotron instabilities in plasmas influenced by crossed longitudinal magnetic fields and strong 

radial electric fields. Dubin [22] offers an in-depth review of the physics governing non-neutral plasmas confined 

in Penning traps, emphasizing the theory and behaviour of collective oscillation modes. 

Fajans [23] investigates a specific class of plasma instabilities that occur in non-neutral plasmas due to the 

presence of a small population of ions. Jaeger [24] provides an in-depth investigation into low-frequency 

instabilities that arise in magnetized plasma systems with crossed electric and magnetic fields. Kabantsev and 

Driscoll [25] presents an important experimental study on instabilities in pure electron plasmas, particularly 

within Penning–Malmberg traps. Levy, Daugherty, and Buneman[26] analyzes ion-induced instabilities in non-

neutral plasmas, particularly focusing on conditions relevant to diocotron mode. Peurrung, Notte, and Fajans 

The first direct observation of ion resonance instability—a key phenomenon involving resonant interactions 

between ions and collective plasma oscillations—was reported in [27]. Sakawa and Joshi [28] explored both the 

growth and nonlinear development of the modified Simon–Hoh instability in plasmas produced by electron 

beams. Yeliseyev [29] analysed the spectral features of modified ion cyclotron oscillations in non-neutral 

plasmas formed via gas ionization. Yeliseyev [30] analysed the oscillation spectrum of an electron gas containing 

a small fraction of ions, revealing how even a minor ion presence can significantly influence the collective 

oscillation modes. Yeliseyev [31] examined Trivelpiece–Gould modes in conjunction with low-frequency 

electron-ion instabilities within non-neutral plasmas. Kaur, Sharma, and Pandey [32] studied the excitation of 

Gould–Trivelpiece (TG) modes by a relativistic electron beam in a magnetized dusty plasma. Their findings 

highlighted how the interplay between the electron beam and dusty plasma can initiate TG modes, uncovering 

significant nonlinear phenomena and wave-particle interactions in magnetically influenced complex plasma 

systems. 

In this study, a theoretical model is developed to examine the cyclotron damping of the Gould–Trivelpiece (TG) 

mode by an electron beam interaction with negative ion and positive ion plasma in a finite cylindrical magnetized 

plasma. Section 2 presents the instability analysis for interaction with  6SF −
 negative ions and K + positive ions 

in finite geometry. The fluid approach is employed to determine the responses of beam electrons, plasma 

electrons, and plasma ions ( 6SF −
 negative ions and K + positive ions) The expressions for the instability growth 

rates are derived using first-order perturbation theory. In Section 3, numerical analysis and discussions are given. 

Comparison with experimental and theoretical works in section 4 and concluding remarks are summarized in 

Section 5. 

Instability Characterization 

We examine a cylindrical plasma column of radius 1a containing negative ions 6SF −
, positive ions K + , and 

electrons, with equilibrium densities of electrons, positive ions, and negative ions denoted by 0 0(1 )e pn n= −  , 

0 0pn n+ =  and 0 0pn n− = respectively, where 0pn represents the overall plasma density. The electrons have 

temperature eT and mass em  , while the positive ions are characterized by temperature ( )ek
T T+ = and mass m+  . 

Similarly, the negative ions have temperature 
6

( )eSF
T T− = and mass m−  . An electrostatic wave, specifically a 

Gould–Trivelpiece (TG) wave, is considered to propagate at an angle relative to the external magnetic field, with 

the wave vector k lying in the x–z plane. 

This equilibrium is perturbed by an electrostatic disturbance, and the corresponding potential associated with 

this perturbation is expressed as 
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An electron beam travels along the z-axis, aligned with the external magnetic field, with a uniform density 
0bn

, radius fb, and equilibrium velocity ˆ
0

z
b

 . Before the introduction of any perturbation, the combined beam–

plasma system is assumed to be quasineutral 

such that  
0 0 0 0( )0e bn n n n+ −− + − −

  
here we have taken 0 0 .p bn n

  

Each of the three species is modeled as a fluid and obeys the continuity and momentum (equation of motion) 

equations, expressed as: 

(2)( . )
e

m eE Be t c


  

 
 
 


+  = − − 


                                                                  

(3).( ) 0.
n

n
t




+ =
  

Upon linearizing the equations of motion and continuity [cf. Eqs. (2) and (3)], the resulting expressions for the 

perturbations in electron density, positive ion density, and negative ion density are obtained as: 

1
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where
eB

ce
m ce


 
= 
 

 is the electron gyro frequency, ci

i

eB

m c
+

+

 
= 
 

  is the positive ion-cyclotron frequency, 

ci

i

eB

m c
−

−

 
= 
 

 is the negative ion gyro-frequency. Substituting the expression from Eqs. (4), (5), (6) & (7) in 

Poisson’s equation 

 2

1 1 1 14 ( )e i i ebe n n n n − +  = + − + and solving for finite geometry 

 

2

2 2 2 2 2 2
2 2

2
0

(1 )
(8)

( )
pi pe pi pb z

z
z b

k
k

k

      
    

+ −

⊥

+ − + + 
  +  =  − 

 

https://rsisinternational.org/journals/ijrias
https://rsisinternational.org/journals/ijrias
http://www.rsisinternational.org/


INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN APPLIED SCIENCE (IJRIAS) 

ISSN No. 2454-6194 | DOI: 10.51584/IJRIAS |Volume X Issue V May 2025 

 

 

 

 

 

Page 1227 www.rsisinternational.org 

 

   

c 

where 
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m




 
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   are the electron, 

positive ion, negative ion and electron beam frequency.
 
Solving Eq. (8)

 where,

2
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In the absence of the electron beam, Eq. (10) simplifies and can be reformulated as:

2
1 2

0 (11)
02

p
r rr

  
+ +  =


 

Equation (11) is recognized as a standard Bessel equation, and its general solution can be expressed as 

( ) ( )
0 0d dlJ p t mY p t = + , where L and M are arbitrary constants. Here J0 denotes the zeroth-order Bessel 

function of the first kind, while Y0 denotes the zeroth-order Bessel function of the second kind. 

At 0t = , Y0→∞ and hence m=0, ( ) ,
0 dlJ p t =

0  .dp p=
 

At 
1
, t a=   must vanish, hence,

( ) 0
0 1dJ p a = ,

1

d
d

X
p

a
= , ( 1,2,...) ,d =  where dX  represents the zeros of the Bessel function J0(X). In the 

presence of the electron beam, the wave function   can be expressed as an orthogonal set of eigenfunctions. 

( ) (12)
0n nAJ p t =   

Further, using the value of   in Equation (10) from Equation (12) and multiplying  both  the sides of  Eq.(9)  

by  ( )
0 dtJ p t   and  integrating  over  t from  0  to  1a ,  here  radius of plasma is 1a ,  Keeping solely the principal 

mode n = d we obtain  
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      if  
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               =1 if  
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Upon substitution of the value of 
2

0p  from Eq. (9) in Eq. (13) we obtain,  
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Now, evaluate Eq. (14) under two conditions: (i) interaction between an electron beam and a plasma that includes 

negative ions (
6SF − ) and (ii) with positive ( K + ) ion. 

Case I: Interaction between an electron beam and a plasma that includes negative ions (
6SF − )  

We will reduce Eq. (14) in the absence of positive ( K + ) ion to 

2
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Eq. (15) can be rewrite as 
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When the beam is present, the frequency   can be expanded as as
1 1 0 1z bL k = + = +  , Here, 

1  the 

small frequency deviation arises from the finite term on the right-hand side of Eq. (16). Cyclotron damping is 

represented by the imaginary part of the frequency, when it is negative due to cyclotron resonance between the 

wave (e.g., Gould –Trivelpiece mode) and ion gyro-motion.

 

 

According to Mikhailovski [32], the growth rate of the unstable mode can be expressed as 

2 2 2
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The real part of the frequency for the unstable mode is expressed as 
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Case II: Interaction between an electron beam and a plasma that includes positive ion ( K + ) 

 We will reduce Eq. (14) in the absence of negative (
6SF − ) ion to 
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Further solving Eq. (20) we will get
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where,   

 

and 

 

 

By applying a similar procedure as in Case I, the growth rate of the unstable mode can be expressed as 

2 2 2

2

2 2 2

2 3

(22)

1/3
3

Im ,
2 2 (1 )

pb z

n

k L

p



  

 
 =  =  

− 
 

The real part of the frequency for the unstable mode is expressed as 
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In both cases, the real part of the unstable mode’s frequency increases with the beam voltage, consistent with 

the experimental findings reported by Chang [33]. 

Numerical Analysis  

For the numerical calculations, we have employed the experimental plasma parameters reported by Song et al. 

[37]. The plasma density value used is 9 31 10
0 0

n n cm
p i

−= =  , Te=0.2eV, TK
+= Te , T
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6( )SF

K

n

n


−

+

= 0.55, 0.65,0.75,0.80,0.95= . Beam radius =1.2 cm, beam density ranges from  

7 8

0

3 35 10 5 10 ,bn cm cm− −=  −    electron beam energy= 30KeV, strength of applied magnetic field B=104  

Gauss and mode number of Bessel function n=1 (1st zero) . Using Equations (17), we have plotted  figure1 the 

growth rate 1 (sec-1) as a function of the longitudinal wave number (cm⁻¹) for various values of  , considering 

the presence of both a negative ion and an electron beam and using Equations (22), we have plotted  figure 2 the 

growth rate 2 (sec-1) as a function of the longitudinal wave number (cm⁻¹) for various values of  , considering 

the presence of both a positive ion and an electron beam. 

  
Figure 1: The variation of the growth rate 1  (s⁻¹) of 

the unstable TG wave mode with respect to the 

longitudinal wave number zk  (cm⁻¹) is shown for 

different values of  , in the presence of a negative ion 

and an electron beam 

Figure 2: Illustrates the variation in the growth rate 

2  (s⁻¹) of the unstable TG wave mode with respect 

to the longitudinal wave number zk  (cm⁻¹) for 

different values of  , in the presence of a positive 

ion and an electron beam 

 

The electron beam interaction-induced plasma growth behaviour is quite different based on whether the plasma 

consists almost entirely of negative ions (like 
6SF − ) or positive ions (like K⁺). This can be seen from the 

comparison between the two plots given. In the initial graph (Fig.1), representing the coupling of an electron 

beam with a plasma with 
6SF − negative ions, the rate of growth (Γ1) is seen to reduce with longitudinal wave 

number zk  (cm⁻¹). In addition, in this cylindrical geometry, the cyclotron damping amplitude of the Trivelpiece–

Gould (TG) mode is quite low. Increasing electronegativity ϵ — as the density ratio between electrons and 

negative ions — causes a moderate increase in damping. This is largely because the free electron density 

decreases, which alters the plasma dielectric response and consequently changes the TG mode dispersion 

characteristics. Nevertheless, the massive weight and sluggish cyclotron behaviour of negative ions like 
6SF −

restrict their capacity to resonate effectively with the wave field. Consequently, the energy exchange between 

the wave and the population of ions amorphously through cyclotron resonance is still inefficient. This inefficient 

wave–particle coupling quashes cyclotron damping, enabling the TG modes to sustain low attenuation and feeble 

interaction with the beam. As a result, beam-induced instabilities are damped in highly electronegative plasmas 

by virtue of the inertial dominance and weak resonant characteristics of the negative ion component. 

By contrast, Figure 2 is related to the interaction of the same electron beam with a plasma with K + positive ions 

in the majority. In this case, the trend of the growth rate is very different from the above. The growth rate rises 

with rising zk  (cm⁻¹), and its value is considerably larger. The cause is rooted in the relatively lower mass of 

K +  ions and their greater dynamic responsiveness to perturbations created by the beam. In this arrangement, the 

electron beam efficiently excites electrostatic Trivelpiece–Gould (TG) modes, allowing energy transfer into the 

plasma and the triggering of wave instabilities. A surge in electronegativity ϵ — the electron to negative ion 

density ratio — is shown to enhance cyclotron damping and thus inhibit instability growth. This happens due to 

https://rsisinternational.org/journals/ijrias
https://rsisinternational.org/journals/ijrias
http://www.rsisinternational.org/


INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN APPLIED SCIENCE (IJRIAS) 

ISSN No. 2454-6194 | DOI: 10.51584/IJRIAS |Volume X Issue V May 2025 

 

 

 

 

 

Page 1231 www.rsisinternational.org 

 

   

c 

increased electronegativity diminishing the free electron population, which weakens collective electron-ion 

dynamics and degrades the requirements for robust cyclotron resonance. Consequently, resonance-mediated 

energy coupling between the plasma and beam diminishes, resulting in smaller instability amplitudes. 

In general, the comparison highlights the prominence of ion species and electronegativity in determining beam–

plasma interactions through cyclotron damping effects. Large mass and weak cyclotron sensitivity of heavy 

negative ions like 
6SF −  result in poor coupling with TG modes, resulting in increased damping and reduction of 

beam-driven instabilities. Conversely, plasmas with light positive ions such as K + allow for stronger cyclotron 

resonance, enabling more effective absorption of energy from the beam and consequently diminishing 

damping—enabling instabilities to develop more easily. In addition, the reverse tendencies exhibited by rising 

electronegativity in negative versus positive ion plasmas accentuate the intricate interconnection between plasma 

content and wave–particle interacting dynamics. These findings are important to the stability control of 

electronegative plasmas and also for beam-driven plasma system design for laboratory and space applications.  

Using the same equations, the growth rates for Case I (Eq. 17) and Case II (Eq. 17) have been analysed as 

functions of beam density 0bn  (cm⁻³) for various values of longitudinal wave number zk  (cm⁻¹), as shown in 

Figure 3 and Figure 4, respectively. 

Figure 3 and Figure 4   show the electron beam density 0bn  (cm⁻³) dependence of the growth rate for various 

longitudinal wavenumbers zk  (cm⁻¹), in electronegative (and electropositive (K⁺) plasmas, respectively. The 

first plot (Fig. 3), that of the 
6SF −  plasma, shows a comparatively lower value of growth rate across the entire 

beam density range. The growth of Γ1 with 0bn  (cm⁻³) is sub-linear and gradual, and the rate of growth decreases 

with higher zk  (cm⁻¹). This is typical of inhibited wave growth caused by the presence of negative ions, which 

enhance plasma inertia and decrease overall coupling between the electron beam and plasma oscillations. On the 

contrary, the second plot (Fig.4) for the K + plasma indicates much larger growth rate for the same or even lower 

beam densities. The plots are more steeply increasing, indicating increased beam-plasma instability, particularly 

at higher zk  (cm⁻¹) values. This higher Γ2 indicates that the availability of light positive ions ( K + ) enables more 

efficient energy transfer between the beam and the plasma, since the plasma is more responsive to perturbations 

without the added damping effects of heavy negative ions. 

 
 

Figure 3.  The figure depicts the variation in the 

growth rate 1  (s⁻¹) of the unstable TG wave mode 

with respect to beam density 0bn  (cm⁻³) for different 

values of longitudinal wave number zk (cm⁻¹), in the 

presence of a negative ion and an electron beam 

Figure 4 illustrates the variation of the growth rate 
2  (s⁻¹) of the unstable TG wave mode with respect 

to beam density 0bn  (cm⁻³) for different values of 

longitudinal wave number zk  (cm⁻¹), in the presence 

of a positive ion and an electron beam 
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The striking difference in cyclotron damping behaviour of Trivelpiece–Gould modes is a result of the intrinsic 

ion charge polarity and mass differences. In plasmas with heavy negative ions like 
6SF − , poor wave–ion energy 

transfer due to the heavy ion mass and poor cyclotron resonance means cyclotron damping is very low. This 

weak coupling permits TG modes to propagate with minimal attenuation, in essence screening the plasma from 

beam-driven energy transfer. By contrast, positive ion plasmas composed of lighter species such as K + show 

stronger cyclotron resonance, permitting more efficient coupling between wave and ion motion. This leads to 

greater cyclotron damping, wherein wave energy is actively absorbed by the ion population.  

In addition, the impact of rising axial wavenumber zk  (cm⁻¹) differs between the two cases. In 
6SF − plasmas, 

damping continues to be weak or even diminishes with zk  (cm⁻¹), which means higher spatial frequency TG 

modes remain less damped and remain predominantly undamped. On the other hand, in K + plasmas, cyclotron 

damping gets stronger with growing zk  (cm⁻¹), echoing stronger wave–ion coupling and greater efficiency in 

energy dissipation at shorter wavelengths. For better visualization and understanding 3-D plots representing the 

variation of growth rates have been given in Figures 5 and 6 corresponding to 2-D plots (Figs. 3 and 4) 

respectively. 

This comparison is essential in planning plasma systems where controlled instability or suppression are 

necessary, e.g., in plasma-based accelerators, thrusters, or plasma processing environment where negative ions 

6SF − such as are deliberately introduced. 

  

Figure 5 3-D plot showing the variation of growth 

rate 1  (sec-1) of unstable mode of TG wave with 

respect to beam density 0bn  (cm-3) for different 

values zk  (cm-1) in presence of negative ion and 

electron beam 

Figure 6 3-D plot showing the variation of growth rate 
2  (sec-1) of unstable mode of TG wave with respect 

to beam density 0bn  (cm-3) for different values zk  (cm-

1) in presence of positive ion and electron beam 

 

EXPERIMENTAL AND THEORETICAL EVIDENCE SUPPORTING CYCLOTRON 

DAMPING BEHAVIOUR IN ELECTRONEUTRAL AND ELECTRONEGATIVE 

PLASMAS 

Comparison of cyclotron damping characteristics of Trivelpiece–Gould (TG) modes in 
6SF − and K +  plasmas 

reveals significant ion mass and charge polarity roles. In heavy negative ion dominant plasmas like 
6SF − , the 

weak cyclotron resonance and enhanced plasma inertia result in significantly lower damping rates of TG modes. 

This weak coupling allows the TG modes to travel with little attenuation and hence screen the plasma from 
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beam-driven energy transfer. This kind of suppression of wave excitation and damping by heavy negative ions 

has experimental backing in which electron beams excite ion cyclotron waves in electronegative plasmas, with 

observations of reduced wave-particle energy transfer caused by the heavy negative ions [34]. In the same way, 

experimental observation of plasma wave propagation in inductively coupled plasmas shows that adding 

negative ions minimizes instability growth by enhancing plasma inertia and reducing effective beam–plasma 

coupling [35]. In addition, the damping of beam-excited wave generation in plasmas with heavy negatively 

charged particles is similar to dusty plasma experimental results with negatively charged dust particles, wherein 

ion beam excitation of the dust acoustic wave is greatly suppressed [36]. 

By contrast, plasmas with lighter positive ions like K + have more intense cyclotron resonance, enabling 

improved wave–ion coupling and increased cyclotron damping. Increasing damping with increasing axial 

wavenumber zk indicates more intense wave-particle interaction and greater energy dissipation efficiency at 

shorter wavelengths. These differences highlight the important role of plasma composition in the stability and 

energy processes of beam-plasma systems. 

CONCLUSION 

The electron beam interaction in 
6SF − and K + plasmas compared shows different cyclotron damping properties 

of Trivelpiece–Gould modes, dominated mainly by ion mass and electronegativity. For 
6SF −  dominated plasmas, 

the heavier negative ions show weak cyclotron resonance, causing lower damping and very little energy transfer 

to the wave field. This produces relatively prolonged TG mode propagation with negligible attenuation. 

Conversely, K + plasmas of lighter positive ions show greater cyclotron coupling, which increases energy transfer 

and results in more efficient damping of TG modes. Increasing axial wavenumber zk  increases damping in K +

plasmas, whereas damping remains weak in 
6SF − environments. These findings highlight that positive ion 

plasmas are more effective in wave energy damping through cyclotron mechanisms, while negative ion plasmas 

naturally inhibit such damping because of their inertial and resonant constraints. 
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