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ABSTRACT 

Pneumocystis pneumonia (PCP) is a severe opportunistic infection that poses significant public health 

challenges, particularly among immunocompromised individuals, necessitating accurate modeling and 

forecasting for effective disease control and prevention. This study aims to identify an optimal Autoregressive 

Integrated Moving Average (ARIMA) model for accurately predicting short-term trends in Pneumocystis 

pneumonia (PCP) infection cases in Benue State, Nigeria. Monthly time series data on PCP cases from January 

2010 to December 2023 were analyzed. The stationarity properties of the data were examined using time series 

plots and the Augmented Dickey-Fuller (ADF) unit root test, which confirmed that the series is integrated of 

order one, I(1). Following the Box-Jenkins methodology, an ARIMA (p,d,q) model was applied to the data. The 

results indicate that the ARIMA (5,1,2) model provided the best fit for modeling and forecasting PCP infection 

cases. The study identified a six-month infection cycle among the population, characterizing PCP as a chronic 

and potentially life-threatening condition if not properly managed. The selected ARIMA (5,1,2) model 

demonstrated dynamic stability and accounted for 76.16% of the variance in the data. It was subsequently used 

to generate short-term forecasts for 24 months (January 2024-December 2025). The projections reveal a 

fluctuating yet increasing trend in PCP cases, with an average of 698 infections per month. A forecast reliability 

test, comparing observed and predicted values, confirmed that the forecasted results were valid, accurate, and 

suitable for informing policy decisions. To enhance PCP infection control in Benue State, the study recommends 

that authorities should strengthen surveillance, improve early diagnosis and treatment, implement targeted public 

health interventions, utilize forecasting models for resource allocation, and encourage further research for 

improved predictive accuracy. 

Keywords: Pneumocystis Pneumonia, Opportunistic Infections, Farmers, Public health, ARIMA model, Benue 

State, Nigeria 

INTRODUCTION 

Pneumocystis pneumonia (PCP) is a life-threatening fungal infection caused by Pneumocystis jirovecii, 

primarily affecting individuals with compromised immune systems such as those living with HIV/AIDS, 

undergoing chemotherapy, or receiving immunosuppressive treatment for autoimmune diseases or organ 

transplants (Iriart, 2015; Chiliza et al., 2020; Muñoz et al., 2020). Initially identified in malnourished infants in 

Central Europe during World War II, PCP later emerged as a defining illness during the 1980s HIV epidemic 

(Roux et al., 2014; Olugbenga et al., 2020). Although highly active antiretroviral therapy (HAART) has reduced 

its prevalence among HIV patients, PCP remains a major opportunistic infection and a serious public health issue 

globally (Chiliza et al., 2020). 

PCP symptoms typically include a dry cough, progressive dyspnea, mild to moderate fever, and non-pleuritic or 

pleuritic chest pain (O’Donnell et al., 2018; Chiliza et al., 2020). Diagnosis often requires bronchoscopy with 

bronchoalveolar lavage, as Pneumocystis cannot be cultured (Chen et al., 2019). First-line treatment and 
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prophylaxis usually involve trimethoprim-sulfamethoxazole, although drug resistance is an increasing concern 

(Muñoz et al., 2020). Advances in molecular techniques have improved understanding of the organism’s 

transmission and resistance mechanisms. 

Though PCP is most strongly linked with HIV/AIDS and low CD4+ T-cell counts, where it often serves as an 

AIDS-defining illness (Stern, 2014; Broadhurst, 2021) its occurrence among HIV-negative individuals is rising. 

This is largely due to increasing use of immunosuppressive therapy for conditions like cancers, autoimmune 

diseases, and organ transplants (Iriart, 2015; Muñoz et al., 2020). PCP remains the most common opportunistic 

infection in AIDS patients, affecting an estimated 3% to 15% of individuals with poorly controlled or untreated 

HIV (Polaczek, 2014). 

Emerging evidence suggests that certain occupational groups, such as farmers, may be at elevated risk due to 

environmental exposures like dust, pesticides, and organic matter (Zahradnik et al., 2016; Wolf et al., 2020). 

These exposures, often combined with pre-existing respiratory conditions such as asthma or COPD both more 

common in farming populations increase susceptibility to respiratory infections like PCP (Ji et al., 2016; 

Boubaker et al., 2019). Farmers also report more respiratory symptoms and worse lung function compared to 

non-farmers (Ji et al., 2016), which may reflect cumulative occupational hazards. 

In regions such as Benue State, Nigeria, the burden of PCP among farmers is underreported and underexplored, 

despite a growing number of cases (Olugbenga et al., 2020). Environmental and occupational conditions in this 

region may predispose farmers to infection, yet a lack of epidemiological data hinders timely diagnosis, 

prevention, and intervention efforts. There is thus a pressing need to investigate PCP as a potential occupational 

hazard in agricultural settings. 

To address this gap, this study aims to model and forecast the morbidity incidence of PCP among farmers in 

Benue State using time series approaches, specifically the Autoregressive Integrated Moving Average (ARIMA) 

model (Box et al., 2015). ARIMA models are effective for identifying trends, ensuring stationarity, and 

forecasting future events based on historical data. Such predictive tools are crucial for enabling health systems 

to plan interventions and allocate resources effectively. 

Several empirical evidence regarding the subject matter are well documented in literature, for example, Bruns et 

al. (2022) conducted a retrospective analysis of Pneumocystis pneumonia (PCP) trends in Germany using 

hospital and national discharge data from 2014 to 2019. The incidence increased from 2.3 to 2.6 cases per 

100,000 populations, driven predominantly by a rise in non-HIV-associated PCP and related mortality. However, 

the study was limited by its exclusive focus on hospitalized patients and the absence of causal data. These 

findings point to a need for further investigation into the drivers of non-HIV PCP incidence. Similarly, Koo et 

al. (2021) retrospectively reviewed 39 cases of Pneumocystis jirovecii pneumonia (PJP) among Korean patients 

with rheumatic diseases from 2005 to 2019. The incidence was 0.41 per 1,000 patient-years, with most cases 

occurring in women with rheumatoid arthritis. Fever and dyspnea were the predominant symptoms, and the study 

reported a mortality rate of 12.8%. The findings underscore the importance of prophylaxis and early recognition 

in immunocompromised patients to prevent adverse outcomes. 

In China, Yang et al. (2021) assessed 48 cases of PJP in kidney transplant recipients across multiple centers 

between 2010 and 2020. The incidence was 1.2%, with fever and cough as the most frequently reported 

symptoms. Trimethoprim-sulfamethoxazole (TMP-SMX) was the primary treatment, and the study recorded a 

14.6% mortality rate. These results highlight the susceptibility of transplant recipients to PJP and the critical 

need for early detection and preventive strategies. Similarly, Chen et al. (2021) reviewed 82 PCP cases in solid 

organ transplant recipients across Australia and New Zealand from 2000 to 2019. While overall PCP incidence 

declined over the study period, an increase was observed among non-lung transplant recipients, particularly those 

with kidney transplants. Despite its valuable insights, the study did not include data beyond 2019 and was limited 

to transplant populations, emphasizing the necessity for continuous surveillance and updated prophylactic 

protocols. 

Zhang et al. (2023) examined 42 PCP cases in patients with rheumatoid arthritis-associated interstitial lung 

disease (RA-ILD) at a rheumatology center in China (2008-2018). Fever and cough were the most prevalent 

https://rsisinternational.org/journals/ijrias
https://rsisinternational.org/journals/ijrias
http://www.rsisinternational.org/


INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN APPLIED SCIENCE (IJRIAS) 

ISSN No. 2454-6194 | DOI: 10.51584/IJRIAS |Volume X Issue V May 2025 

 

 

 

 

 

www.rsisinternational.org 
Page 1173 

 

   

 

symptoms, TMP-SMX remained the treatment of choice, and the study reported a mortality rate of 19%. Though 

rare, PCP in RA-ILD patients represents a significant clinical concern, reinforcing the need for timely diagnosis 

and targeted management. In South Africa, Chiliza et al. (2020) investigated 124 HIV-associated PCP cases 

from 2004 to 2015. Most patients had severely depleted CD4 counts, and tuberculosis co-infection was common. 

Notably, mortality among ICU-admitted patients reached 61.9%. The study highlights the devastating outcomes 

of PCP in the context of advanced HIV and calls for improved clinical management and up-to-date 

epidemiological surveillance. 

MATERIALS AND METHODS 

Source of Data 

The data used in this study comprises serological confirmed cases of Pneumocystis Pneumonia infection (PCP) 

cases in Benue state of Nigeria from January, 2010 to December, 2023. The data consists of 168 monthly 

observations of pneumocystis pneumonia infection. The data was obtained as secondary data from Benue State 

Epidemiological Unit, Makurdi.  To reduce and stabilize the mean and variance, the original data on 

pneumocystis pneumonia infection among farmers in the study area was transformed to natural logarithm 

through the following formula: 

𝑌𝑡
′ = ln 𝑌𝑡                                                                                                                                         (1) 

where 𝑌𝑡 is the current Pneumonia infection at time 𝑡, while 𝑙𝑛 is the natural logarithm. 

METHODS OF DATA ANALYSIS 

The following statistical tools are employed in the analysis of data in this work. Let {𝑌𝑡} be a stochastic time 

series process. {𝑌𝑡} is defined as a sequence of monthly confirmed cases of pneumocystis pneumonia infection 

indexed by time and shall be used to refer to a series throughout this study. 

Preliminary tests 

The following preliminary tests such as descriptive statistics and normality test and unit root test are employed 

before model specification. 

Descriptive statistics and Jarque-Bera test of normality 

The mean of the monthly confirmed cases of pneumocystis pneumonia infection is computed as: 

𝑦̅ =
1

𝑛
∑ 𝑦𝑖

𝑛

𝑖=1

                                                                                                                                  (2) 

The sample standard deviation of the monthly confirmed cases of pneumocystis pneumonia infection over a 

given period of time is computed using the following formula: 

𝜎̂ = √
1

𝑛 − 1
∑(𝑦𝑖 − 𝑦̅)2

𝑛

𝑡=1

                                                                                                        (3) 

where 𝑦̅ is the sample mean defined in (2) and 𝑛 is the sample size. 

Jarque-Bera test is a normality test of whether a given sample data have the skewness and kurtosis similar to that 

of a normal distribution. The test was proposed by Jarque and Bera (1980, 1987) and tests the null hypothesis 

that the series is normally distributed. Given a series {𝑌𝑡}  the JB test statistic is defined as:  
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𝐽𝐵 =
𝑇

6
(𝑔1

2 +
1

4
(𝑔2 − 3)2)                                                                                                 (4) 

where T is the number of observations, 𝑔1 is the sample skewness which is estimated by: 

𝑔1 =
𝜇3

𝜇2
3 2⁄

= 𝑇1 2⁄ ∑(𝑦𝑡 − 𝑦̅

𝑇

𝑡=1

)3 (∑(𝑦𝑡 − 𝑦̅)2

𝑇

𝑡=1

)

3 2⁄

                                                     (5)⁄  

and 𝑔2 is the sample kurtosis which is estimated by: 

𝑔2 =
𝜇4

𝜇2
2 = 𝑇 ∑(𝑦𝑡 − 𝑦̅

𝑇

𝑡=1

)4 (∑(𝑦𝑡 − 𝑦̅)2

𝑇

𝑡=1

)

2

⁄                                                                    (6) 

The JB normality test checks the following pair of hypothesis: 

𝐻0: 𝜇̂3 = 0 and 𝜇̂4 = 0  (i.e. 𝑦𝑡 is from a normal distribution) against the alternative 

𝐻1: 𝜇̂3 ≠ 0 and 𝜇̂4 ≠ 0  (i.e. 𝑦𝑡 is not from a normal distribution) 

The test rejects the null hypothesis of normality if the p-value of the JB test statistic is less than 𝛼 = 0.05, 

otherwise the null hypothesis is accepted. 

Autocorrelation function (ACF) and Partial autocorrelation function (PACF)  

The ACF measures whether a variable is related to its own values as a function of a time difference. 

Mathematically, the Autocorrelation Function (ACF) of a stationary series {𝑌𝑡} is defined as: 

𝜌𝑘 =
𝐶𝑜𝑣(𝑌𝑡 , 𝑌𝑡+𝑘  )

√𝑣𝑎𝑟(𝑌𝑡)√𝑣𝑎𝑟(𝑌𝑡+𝑘)
=

𝛾𝑘

𝛾0
                                                                                             (7 ) 

where 𝛾𝑘is the covariance between 𝑌𝑡 and 𝑌𝑡+𝑘  given as 

𝛾𝑘 = 𝐶𝑜𝑣(𝑌𝑡, 𝑌𝑡+𝑘) = 𝐸(𝑌𝑡 − 𝜇)(𝑌𝑡+𝑘 − 𝜇)                                                                            (8) 

and 𝛾0   {((𝑌𝑡 − 𝜇 )2}   𝑣𝑎𝑟 (𝑌𝑡)  = 𝜎2  for a stationary process, 𝜌0 = 1 and − 1 ≤ 𝜌𝑘 ≤ 1  otherwise. The 
sample autocorrelation function can be estimated by: 

𝜌̂𝑘 =
1

𝑇 − 𝑘
∑ (𝑌𝑡 − 𝑌𝑡̅)(𝑌𝑡−𝑘 − 𝑌̅𝑡−𝑘)

𝑇

𝑡=𝑘+1

1

𝑇 − 𝑘
∑ (𝑌𝑡−𝑘 − 𝑌̅𝑡−𝑘)2

𝑇

𝑡=𝑘+1

⁄                          (9) 

which is the OLS estimator in 𝑌𝑡 = 𝑐 + 𝜌𝑘𝑌𝑡−𝑘 + et and the 95% confidence bounds are given by ±1.96/√𝑇, 

where T is the number of observations. 

The partial autocorrelation between 𝑌𝑡 and 𝑌𝑡+𝑘 is equal to the ordinary autocorrelation between (𝑌𝑡 − 𝑌̂𝑡) and 

(𝑌𝑡+𝑘 − 𝑌̂𝑡+𝑘). Let 𝜙𝑘𝑘  denotes the partial autocorrelation between 𝑌𝑡 and 𝑌𝑡+𝑘 , then we have 

𝜙𝑘𝑘 =
𝐶𝑜𝑣[(𝑌𝑡 − 𝑌̂𝑡)(𝑌𝑡+𝑘 − 𝑌̂𝑡+𝑘)]

√𝑣𝑎𝑟(𝑌𝑡 − 𝑌̂𝑡)√𝑣𝑎𝑟(𝑌𝑡+𝑘 − 𝑌̂𝑡+𝑘)
                                                                            (10) 

A recursive procedure for computing the sample partial autocorrelation function (PACF) starting with 𝜙11 = 𝜌̂1 

for computing 𝜙𝑘𝑘  was given by Durbin (1960) as 
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𝜙̂𝑘+1,𝑘+1 = 𝜌̂𝑘+1 − ∑ 𝜙̂𝑘𝑗𝜌̂𝑘+1−𝑗

𝑘

𝑗=1

(1 − ∑ 𝜙̂𝑘𝑗 𝜌̂𝑗

𝑘

𝑗=1

)⁄                                                       (11) 

and𝜙̂𝑘+1,𝑗 = 𝜙̂𝑘𝑗 − 𝜙̂𝑘+1,𝑘+1𝜙̂𝑘,𝑘+1−𝑗 , 𝑗 = 1, 2, … , 𝑘. This procedure also holds for computing the theoretical 

PACF 𝜙𝑘𝑘 . 

Ljung-Box Q-statistic test  

The Ljung-Box Q-statistic test also called Portmanteau test is a test used to investigate the presence of serial 

correlation or autocorrelation in the residuals of a series. The test checks the following pairs of hypotheses: 

𝐻0: 𝜌𝑘,1 = 𝜌𝑘,2 = ⋯ = 𝜌𝑘,𝑇 = 0 (all lags correlations are zero) 

𝐻1: 𝜌𝑘,1 ≠ 𝜌𝑘,2 ≠ ⋯ ≠ 𝜌𝑘,𝑇 ≠ 0 (there is at least one lag with non-zero correlation). The test statistic is given 

by: 

𝑄(𝐿𝐵) = 𝑇(𝑇 + 2) ∑
𝜌̂𝑘

2

𝑇 − 𝑘

ℎ

𝑘=1

                                                                                                      (12) 

where T is the sample size, Q is the sample autocorrelation at lag k. We reject 𝐻0 if p-value is less than 𝛼 = 0.05 

level of significance (Ljung and Box, 1978). 

Augmented Dickey-Fuller (ADF) unit root test 

The Augmented Dickey-Fuller (ADF) unit root test is used to check whether the given series contains a unit root 

or whether the given series is stationary or not (Dickey and Fuller, 1979). The Augmented Dickey-Fuller (ADF) 

test constructs a parametric correction for higher-order correlation by assuming that the series follows an AR( 

𝑝) processand adding lagged difference terms of the dependent variable to the right-hand side of the test 

regression: 

∆𝑌𝑡 = 𝛼𝑌𝑡−1 + 𝑋𝑡
′𝛿 + 𝛽1∆𝑌𝑡−1 + 𝛽2∆𝑌𝑡−2 + ⋯ + 𝛽𝑝∆𝑌𝑡−𝑝 + 𝜀𝑡                                       (13) 

where 𝑋𝑡are optional exogenous regressors which may consist of constant, or a constant and trend, 𝛼 and 𝛿 are 

parameters to be estimated, and the 𝜀𝑡are assumed to be white noise. The null and alternative hypotheses are 

written as: 

𝐻0: 𝛼 = 0 versus𝐻1:  𝛼 < 0 

and evaluated using the conventional 𝑡 −ratio for 𝛼: 

𝑡𝛼 = 𝛼̂ {se(𝛼̂)}⁄                                                                                                                           (14) 

where 𝛼̂ is the estimate of 𝛼, and se(𝛼̂) is the coefficient standard error.  

The autoregressive (AR) model 

A stochastic time series process {𝑌𝑡} is an autoregressive process of order p, denoted AR(𝑝) if it satisfied the 

difference equation 

𝑌𝑡 = 𝜙1𝑌𝑡−1 + 𝜙2𝑌𝑡−2 + ⋯ + 𝜙𝑝𝑌𝑡−𝑝 + 𝜀𝑡                                                                         (15) 

where 𝜀𝑡 is a white noise and 𝜙1, 𝜙2, … , 𝜙𝑝 are constants to be determined.  
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Moving average (MA) model 

A time series {𝑌𝑡} which satisfies the difference equation 

𝑌𝑡 = 𝜀𝑡 + 𝜃1𝜀𝑡−1 + 𝜃2𝜀𝑡−2 + ⋯ + 𝜃𝑞𝜀𝑡−𝑞                                                                           (16) 

where 𝜃1, 𝜃2, … , 𝜃𝑞  are fixed constants with 𝜀𝑡 as white noise is called a moving average process of order q, 

denoted MA(𝑞). 

Autoregressive moving average (ARMA) model 

A stochastic time series process {𝑌𝑡} which results from a linear combination of autoregressive and moving 

average processes is called an Autoregressive Moving Average (ARMA) process of order p, q, denoted ARMA 

(𝑝, 𝑞) if it satisfies the following difference equation: 

𝑌𝑡 = 𝜙1𝑌𝑡−1 + 𝜙2𝑌𝑡−2 + ⋯ + 𝜙𝑝𝑌𝑡−𝑝 + 𝜀𝑡 + 𝜃1𝜀𝑡−1 + 𝜃2𝜀𝑡−2 + ⋯ + 𝜃𝑞𝜀𝑡−𝑞           (17) 

where 𝜙1, 𝜙2, … , 𝜙𝑝 are fixed constants associated with the AR terms and 𝜃1, 𝜃2, … , 𝜃𝑞  are fixed constants 

associated with the MA terms with 𝜀𝑡  being a white noise. The stationarity of an ARMA (𝑝, 𝑞) process is 

guaranteed if the roots of the polynomial 

1 − 𝜙1𝑧 − 𝜙2𝑧2 − ⋯ − 𝜙𝑝𝑧𝑝 = 0 lie outside the unit circle.  

An ARMA (2,2) model is specified as: 

𝑌𝑡 = 𝜙0 + 𝜙1𝑌𝑡−1 + 𝜙2𝑌𝑡−2 + 𝜀𝑡 + 𝜃1𝜀𝑡−1 +   𝜃2𝜀𝑡−2                                                                   (18) 

Autoregressive integrated moving average (ARIMA) model 

Autoregressive (AR), Moving Average (MA) or Autoregressive Moving Average (ARMA) model in which 

differences have been taken are collectively called Autoregressive Integrated Moving Average or ARIMA 

models. A time series {𝑌𝑡 } is said to follow an integrated autoregressive moving average model if the 𝑑 th 

difference 𝑊𝑡 =  ∇𝑑𝑌𝑡 is a stationary ARMA process. If {𝑊𝑡} follows an ARMA(p, q) model, we say that {𝑌𝑡} 

is an ARIMA (p, d, q) process. For practical purposes, we can usually take 𝑑 =  1 or at most 2. 

Consider then an ARIMA (p, 1, q) process, with 𝑊𝑡 =  𝑌𝑡 −  𝑌𝑡−1, we have 

𝑊𝑡 = 𝜙1𝑊𝑡−1 + 𝜙2𝑊𝑡−2 + ⋯ +  𝜙𝑝𝑊𝑡−𝑝 +  𝜀𝑡 − 𝜃1𝜀𝑡−1 − 𝜃2𝜀𝑡−2 − ⋯ − 𝜃𝑞𝜀𝑡−𝑞  (19) 

In terms of the observed series, 

𝑌𝑡 − 𝑌𝑡−1 = 𝜙1(𝑌𝑡−1 − 𝑌𝑡−2) + 𝜙2(𝑌𝑡−2 − 𝑌𝑡−3) … +  𝜙𝑝(𝑌𝑡−𝑝 − 𝑌𝑡−𝑝−1) 

                       + 𝜀𝑡 − 𝜃1𝜀𝑡−1 − 𝜃2𝜀𝑡−2 − ⋯ − 𝜃𝑞𝜀𝑡−𝑞                                                             (20) 

Model Order Selection  

We use the following information criteria for model order selection in conjunction with log likelihood function: 

Akaike information criterion (AIC) due to Akaike (1978), Schwarz information Criterion (SIC) due to (Schwarz, 

1978) and Hannan-Quinn information Criterion (HQC) due to (Hannan, 1980). The formula for the information 

criteria are: 

               𝐴𝐼𝐶(𝑃) = −2 ln(𝐿) + 2𝑃                                                                                          (21)  

𝑆𝐼𝐶(𝑃) = −2 ln(𝐿) + 𝑃𝑙𝑛(𝑇)                                                                                 (22) 
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𝐻𝑄𝐶(𝑃) = 2 ln[ln T] 𝑃 − 2 ln L                                                                             (23) 

where 𝑃 is the number of free parameters to be estimated in the model, T is the number of observations and L is 

the likelihood function defined as: 

𝐿 = ∏ (
1

2𝜋𝜎𝑖
2)

1
2⁄

𝑒𝑥𝑝 [− ∑
(𝑦𝑖 − 𝜇)2

2𝜎𝑖
2

𝑛

𝑖=1

]

𝑛

𝑖=0

                                                             (24) 

ln(𝐿) = 𝐼𝑛 [∏ (
1

2𝜋𝜎𝑖
2)

1
2⁄𝑛

𝑖=1

] −
1

2
∑

(𝑦𝑖 − 𝜇)2

𝜎𝑖
2

𝑛

𝑖=1

                                                       (25) 

Thus given a set of estimated ARIMA models for a given set of data, the preferred model is the one with the 

minimum information criteria and maximum log likelihood. 

Model Forecast Evaluation 

We employed Root Mean Square Error (RMSE) and Mean Absolute Error (MAE) accuracy measures to select 

an optimal model mode that is both parsimonious and accurately forecast the data based on minimum values of 

the accuracy measures.  

Root Mean Square Error (RMSE) 

The Root Mean Square Error is a statistical tool for measuring the accuracy of a forecast method. It is computed 

as: 

𝑅𝑀𝑆𝐸 =
1

𝑛
∑(𝑌̂𝑡 − 𝑌𝑡)2

𝑛

𝑡=1

                                                                                                          (26) 

Where 𝑌̂𝑡  is the forecast value of the series and 𝑌𝑡  is the actual series and 𝑛  is the number of forecast 

observations. 

Mean Absolute Error (MAE) 

The mean absolute error (MAE) is a statistical tool for measuring the average size of the errors in a collection of 

predictions, without taking their directions into account. It is measured as the average absolute difference 

between the predicted values and the actual values and is used to assess the effectiveness of a model. It is given 

as:  

𝑀𝐴𝐸 =
1

𝑛
(∑|𝑌̂𝑡 − 𝑌𝑡|

𝑛

𝑡=1

)                                                                                               (27) 

where 𝑌𝑡 is the actual value of the series at time 𝑡, 𝑌̂𝑡 is the forecasted value of the series and 𝑛 is the number of 

observations. The lower the value of RMSE and MAE, the better the model is able to forecast future values. 

Paired Sample t-Test 

To examine whether the actual cases of pneumocystis pneumonia are significantly different from the forecast 

values, a paired sample t-test is employed. A paired sample t-test is a statistical test used to determine whether 

there is a significant difference between the means of two related groups (actual and forecast). It is designed 

specifically for situations where each observation in one sample can be paired or matched with a specific 

observation in the other sample. 
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Let 𝑑𝑖 = 𝑥𝑖 − 𝑦𝑖 , 𝑖 = 1, 2, 3, … , 𝑛 denote the difference in the observations for the 𝑖th unit. Where 𝑥𝑖 is the set 

of actual series and is 𝑦𝑖 is the set of forecast series. Under the following pair of hypothesis: 

𝐻0: 𝜇𝑥 = 𝜇𝑦  versus 𝐻1: 𝜇𝑥 ≠ 𝜇𝑦                                                                                              (28) 

The test statistic for paired sample t-test is given by: 

𝑡 =
𝑑̅

𝑠 √𝑛⁄
=

𝑑̅

√𝑠2 𝑛⁄
~𝑡𝑛−1                                                                                                       (29) 

where    

𝑑 = 𝑥 − 𝑦; 𝑑̅ =
1

𝑛
∑ 𝑑𝑖 and 𝑠2 =

1

𝑛 − 1
∑(𝑑 − 𝑑̅)

2

=
1

𝑛 − 1
[∑ 𝑑2 −

(∑ 𝑑)2

𝑛
] 

The (1 − 𝛼)100% confidence interval for 𝜇𝑥 = 𝜇𝑦is given by: 

[(𝑥̅ − 𝑦̅) ± 𝑡𝑛1+𝑛2−2(𝛼 2⁄ ). √𝑠2 (
1

𝑛1
+

1

𝑛2
)]                                                                    (30) 

where 𝑡𝑛1+𝑛2−2(𝛼 2⁄ ) is the two-tailed critical value of t for (𝑛1 + 𝑛2 − 2) degree of freedom and at 𝛼 level of 

significance. 

RESULTS AND DISCUSSION 

Summary Statistics and Normality Measures 

To better understand the summary statistics and distributional characteristics of the series under investigation, 

we compute the descriptive statistics such as monthly mean, maximum and minimum, standard deviation as well 

as normality measures such as skewness, kurtosis and Jarque-Bera statistic of Pneumocystis Pneumonia Infection 

data in Benue State. The results are presented in Table 1. 

The summary statistics results reported in Table 1 show that the monthly mean of pneumocystis pneumonia 

infection in Benue State is approximately 613 infections with an approximate standard deviation of 175 

infections which indicate a high level of dispersion from the average monthly infection for the period under 

review. The wide gap between the maximum and minimum infection gives supportive evidence for the high 

level of variability of Pneumonia Infection in the study area over the period under investigation. 

Table 1: Summary Statistics of Pneumocystis Pneumonia Infection in Benue State 

Variable  Value 

Mean  613.0774 

Maximum  1131.000 

Minimum  370.0000 

Standard Deviation  175.0535 

Skewness  0.858833 

Kurtosis  3.584584 
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Jarque-Bera statistic  23.04481 

p-value  0.000010 

Number of Observations  168 

The skewness coefficient of the series which is greater than zero indicates that the distribution of pneumocystis 

pneumonia infection in the study area is substantially positively skewed, the kurtosis coefficient, which is a 

measure of the thickness of the tail of the distribution of the series exhibit a kurtosis which is greater than 3. The 

skewness and kurtosis coefficients of the series show that the pattern of pneumonia infection in the study area 

during the study period does not follow a normal distribution. The null hypothesis of normality for Jarque-Bera 

test at 5% level of significance is rejected for this series since the p-value of the Jarque-Bera test statistic is 

0.000010 which is less than 𝛼 = 0.05. In conclusion, the distribution of pneumocystis pneumonia infection 

among farmers in Benue State does not follow normal distribution. 

Graphical Properties of the Series 

The first step in analyzing time series data is to plot the original series in level against time and observe its 

graphical properties. This help in understanding the trend as well as pattern of movement of the original series. 

Here we plot the original series (monthly infection cases of pneumocystis pneumonia) as a function of time. The 

time plot is presented in Figure 1.The time plot of pneumocystis pneumonia infection cases reported in Figure 1 

represents the raw series in level with high mean and variance. To reduce this high mean and variance in the 

series, we transform the series to natural log which stabilizes the mean and variance of the series. The time plot 

of the natural log transform of the series is reported in Figure 2.We observe from the natural log transform series 

in Figure 2 that the trending in the series is not smooth which indicates that the series do not have a constant 

mean and variance (i.e., the series is not mean reverting). The variability in the series appears not to be uniform 

which raises the possibility that the variance is changing with time (heteroskedastic). These observations suggest 

that the series is non-stationary and contains a unit root. The series is thus subjected to differencing and the result 

is presented in Figure 3.From the result of the first difference series reported in Figure 3, we observe that the 

trending in the series is smoother which indicates that the series have a constant mean (i.e., the series is mean 

reverting). The variability in the series appears to be uniform which raises the possibility that the variance is not 

changing with time (homoskedastic). These observations suggest that the series is weakly or covariance 

stationary. The series also exhibits some gradual rise and fall, which indicates the presence of some degree of 

autocorrelation. 

 

Figure 1:Time Plot of Monthly Pneumocystis Pneumonia Infection Cases in Benue State (Level Series) 
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Figure 2:Time Plot of Monthly Pneumocystis Pneumonia Infection Cases in Benue State (Log Transformed 

Series) 

 

Figure 3:Time Plot of Monthly Pneumocystis Pneumonia Infection Cases in Benue State (First Differenced 

Series) 

Augmented Dickey-Fuller (ADF) Unit Root Test Result 

This study employs Augmented Dickey-Fuller (ADF) unit root test to determine the order of integration and 

stationarity characteristics of the series. The result of the ADF test is reported in Table 2. 

The ADF unit root test result which is conducted with intercept only and with intercept and linear trend reported 

in Table 2 fails to reject the null hypothesis of unit root in the level of the series. This means that the series is 

non-stationary and contains a unit root in level since the ADF test statistics are greater than the critical values of 

the ADF test at the 5% levels of significance with statistically non-significant p-values. However, the ADF unit 

root test result of the first difference of the series which is also conducted with intercept only and with intercept 

and linear trend rejects the null hypothesis of unit root in the series. This means that the first difference of series 

is stationary and do not contains a unit root since the ADF test statistics are smaller than the critical values of 

the ADF test at the 5% levels of significance with statistically significant p-values.  
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Table 2: ADF Unit Root Test Result 

Variable  Option  ADF test stat. p-value  5% critical 

value 

Remark  

𝑙𝑛𝑝𝑐𝑝 

 

Intercept only  -2.3675 0.1526 -2.4707 Non-stationary  

Intercept & trend  -2.4555 0.3499 -3.4376 Non- stationary 

∇𝑙𝑛𝑝𝑐𝑝 

 

Intercept only  -9.1211 0.0000 -2.8793 Stationary  

Intercept & trend  -9.1439 0.0000 -3.4378 Stationary  

Ljung-Box Q-statistic Test for Serial Correlation 

To investigate the presence of autocorrelation in the series, we employ Ljung-Box Q-statistic serial correlation 

test for both the natural log level series and the first difference of the natural log transformed series and the 

results are presented in Table 3. 

The results of Ljung-Box Q-statistic reported in Table 3 show the presence of autocorrelations in both the level 

series and the log transformed series as the p-values in both series are highly statistically significant. This 

indicates that the series are serially correlated. When a series exhibits serial correlation, it implies that the values 

of the series at different time points are not independent of each other, but rather, they depend on the preceding 

values. The implication of serial correlation in a series underscores the importance of appropriately modeling 

and analyzing time series data to account for the dependence structure between observations and obtain reliable 

results. 

Table 3: Autocorrelation functions and Ljung-Box Q-statistics for PCP 

Lag ACF PACF Q-statistic p-value ACF PACF Q-statistic p-value 

 Natural Log of PCP First Difference of Natural Log of PCP 

    1 0.7974 0.7974 108.7448 0.0000 -0.2994 -0.2994 15.2392 0.0000 

    2 0.7107 0.2055 195.6465 0.0000 -0.0822 -0.1888 16.3960 0.0000 

    3 0.6557 0.1193 270.0733 0.0000 -0.1035 -0.2156 18.2397 0.0000 

    4 0.6415 0.1591 341.7415 0.0000 0.0152 -0.1341 18.2796 0.0001 

    5 0.6213 0.0848 409.3871 0.0000 -0.0717 -0.1930 19.1752 0.0002 

    6 0.6278 0.1410 478.8629 0.0000 0.1100 -0.0334 21.2968 0.0002 

    7 0.5919 -0.0107 541.0028 0.0000 0.1126 0.1158 23.5342 0.0001 

    8 0.5147 -0.1381 588.2851 0.0000 -0.0838 0.0050 24.7814 0.0002 

    9 0.4693 -0.0279 627.8458 0.0000 -0.2000 -0.2098 31.9274 0.0000 

   10 0.4994 0.1700 672.9193 0.0000 0.0225 -0.1537 32.0187 0.0000 

   11 0.5210 0.1090 722.3047 0.0000 0.0840 -0.0444 33.2957 0.0000 
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   12 0.5092 0.0010 769.7807 0.0000 -0.0132 -0.0884 33.3272 0.0001 

   13 0.5027 0.0461 816.3393 0.0000 0.0623 -0.0332 34.0379 0.0001 

   14 0.4730 -0.0072 857.8326 0.0000 0.1055 0.1155 36.0929 0.0001 

   15 0.4062 -0.1297 888.6381 0.0000 -0.2180 -0.1027 44.9163 0.0000 

   16 0.4222 0.0841 922.1300 0.0000 -0.0053 -0.0468 44.9214 0.0000 

   17 0.4378 0.0197 958.3744 0.0000 0.0493 -0.0328 45.3781 0.0000 

   18 0.4354 0.0078 994.4625 0.0000 0.2163 0.1785 54.2381 0.0000 

   19 0.3488 -0.1915 1017.7842 0.0000 -0.0842 0.0894 55.5911 0.0000 

   20 0.2936 -0.0980 1034.4216 0.0000 -0.1508 -0.1603 59.9545 0.0000 

   21 0.2965 0.1259 1051.4984 0.0000 -0.0244 -0.1392 60.0698 0.0000 

   22 0.3149 0.1120 1070.8943 0.0000 0.0932 0.1080 61.7594 0.0000 

   23 0.2952 -0.1115 1088.0570 0.0000 0.0140 0.1423 61.7980 0.0000 

   24 0.2690 -0.1292 1102.4079 0.0000 0.0335 -0.0158 62.0194 0.0000 

Autocorrelation and Partial Autocorrelation Functions of the Series 

We also examine the autocorrelation function (ACF) and partial autocorrelation function (PACF) of the first 

differenced natural log transformed series to see the degree of correlation in the data points of the series. The 

ACF and PACF are the approximate two standard error bounds (the upper confidence bound and the lower 

confidence bound) computed as ±1.96√𝑇, where T is the number of observations. If the sample autocorrelation 

and partial autocorrelation are within these bounds, it is not significantly different from zero at (approximately) 

5% significance level. That is, if all lag values of the data or most of the lag values fall within these confidence 

bounds, then, the series is stationary and independent of time but non-stationary and time dependent if otherwise. 

The ACF and PACF plots are reported in Figure 4. 

From the ACF and PACF plots of the first differenced log transformed series reported in Figure 4, it is observed 

that most of the lag values are inside the confidence bounds and we conclude that Pneumocystis Pneumonia 

infection series in Benue state is stationary in the first difference and time independent (i.e., the series do not 

contain a unit root in the first difference and the infection in the present month does not depend on the infection 

of the previous month and vice versa).  

 

Figure 4: Autocorrelation Function Plots of the First Differenced Log Transformed Series 
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Model Order Selection 

To search for an optimal time series model that will best model and forecasts Pneumocystis pneumonia infection 

cases in Benue State, Schwarz information criterion (SIC) and Hannan Quinn criterion (HQC) in conjunction 

with the log likelihood (LogL) have been employed to select the optimal model. The best fitting model is the 

one with the least information criteria and highest log likelihood value. This model will produce the best fit as 

well as the forecast. The model search result is presented in Table 4.  

Table 4: Model Order Selection  

S/n Model  LogL AIC SIC HQC 

1. ARIMA(0,1,1) 64.2335 -0.7618 -0.7431 -0.7542 

2. ARIMA(1,1,0) 71.3238 -0.8422 -0.8235 -0.8346 

3. ARIMA(1,1,1) 75.3786 -0.8720 -0.8158 -0.8492 

4. ARIMA(0,1,2) 57.8475 -0.6808 -0.6621 -0.6732 

5. ARIMA(2,1,0) 56.1855 -0.6689 -0.6501 -0.6732 

6. ARIMA(1,1,2) 71.9178 -0.8303 -0.7744 -0.8075 

7. ARIMA(2,1,1) 70.6238 -0.8197 -0.7632 -0.7968 

8. ARIMA(2,1,2) 56.2259 -0.6452 -0.5887 -0.6224 

9. ARIMA(1,1,3) 65.7082 -0.7676 -0.7301 -0.7524 

10. ARIMA(3,1,1) 70.9362 -0.6407 -0.8029 -0.8253 

11. ARIMA(3,1,2) 75.1936 -0.8731 -0.7353 -0.7577 

12. ARIMA(2,1,3) 75.9485 -0.8478 -0.7349 -0.8020 

13. ARIMA(3,1,3) 75.0993 -0.8305 -0.6982 -0.7767 

14. ARIMA(1,1,4) 76.9713 -0.8551 -0.7426 -0.8094 

15. ARIMA(4,1,1) 72.8071 -0.8197 -0.7058 -0.7734 

16. ARIMA(2,1,4) 74.8369 -0.8223 -0.6905 -0.7688 

17. ARIMA(4,1,2) 74.2619 -0.8253 -0.6924 -0.7713 

18. ARIMA(3,1,4) 76.3251 -0.8332 -0.6820 -0.7718 

19. ARIMA(4,1,3) 74.8969 -0.8208 -0.6689 -0.7592 

20. ARIMA(4,1,4) 80.3973 -0.8760 -0.7052 -0.8067 

21. ARIMA(1,1,5) 75.8244 -0.8292 -0.6980 -0.7759 

22. ARIMA(5,1,1) 72.1822 -0.8047 -0.6713 -0.7506 
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23. ARIMA(2,1,5) 82.6483 -0.9048 -0.7542 -0.8437 

24. ARIMA(5,1,2)** 97.9527 -0.9776 -0.7911 -0.9355 

25. ARIMA(3,1,5) 81.8532 -0.8885 -0.7183 -0.8194 

26. ARIMA(5,1,3) 79.7985 -0.8741 -0.7025 -0.8044 

27. ARIMA(4,1,5) 78.4717 -0.8401 -0.7631 -0.7631 

28. ARIMA(5,1,4) 79.9707 -0.8638 -0.6732 -0.7865 

29. ARIMA(5,1,5) 91.7794 -0.9073 -0.7676 -0.9122 

Following the result of Table 4 on model order selection, ARIMA (5,1,2) model seems to provide statistically 

adequate representation of the given data since it has the highest log likelihood value as well as the smallest AIC, 

SIC and HQC values. Hence ARIMA (5,1,2) model has been retained as the optimal and best candidate to model 

and forecast Pneumocystis Pneumonia infection cases in Benue State. 

Model Estimation Result   

After the best model has been chosen, the next thing to do is to estimate the parameters of the model. The result 

of the parameter estimates of the optimal ARIMA (5,1,2) model is presented in Table 5. 

Table 5: Parameter Estimates of ARIMA (5,1,2) Model 

Variable Coefficient Std. Error t-Statistic P-value 

AR(1) 0.232551 0.098942 2.350372 0.0200 

AR(2) 0.843050 0.087982 9.582104 0.0000 

AR(3) -0.424496 0.098911 -4.291705 0.0000 

AR(4) 0.231631 0.080086 2.892272 0.0044 

AR(5) -0.234496 0.086340 -2.715967 0.0074 

MA(1) -0.710015 0.063880 -11.11474 0.0000 

MA(2) 0.895595 0.058281 15.36684 0.0000 

R-squared 0.761643 AIC -0.973573  

Adjusted R2 0.633061 SIC -0.791106  

Log likelihood 97.95273 HQC -0.935502  

Durbin-Watson stat. 1.996233    

From the result of the parameter estimates of Table 5, the data fits an ARIMA (5,1,2) model which is presented 

below: 

(1 − L)Yt = 0.2326Yt−1 + 0.8431Yt−2 − 0.4245Yt−3 + 0.2316Yt−4 − 0.2345Yt−5 + εt − 0.7100εt−1

+ 0.8956εt−2                                                                              (31) 
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where 

𝑌𝑡 =Pneumocystis Pneumonia infection response (dependent) variable at time 𝑡 

𝑌𝑡−1, … , 𝑌𝑡−5 =Pneumocystis Pneumonia infection response variables at time t − 1, … , t − 5 respectively 

𝜀𝑡 = Error term at time 𝑡 

𝜀𝑡−1, 𝜀𝑡−2 = Error terms in the previous time periods which are incorporated in the response variable 𝑌𝑡. 

The result of the estimated ARIMA (5,1,2) model presented in Table 5 and Equation (31) shows that the AR and 

MA slope coefficients of the model are all statistically significant at 5% significance levels and satisfy the 

stationarity and stability constraints of the model as the sums of AR and MA terms are all less than unity (i.e., 

𝜙𝑖 + 𝜃𝑖 < 1).The coefficient of determination (R2) of the regression model is 0.7616 indicating that about 

76.16% of the total variations in Pneumocystis Pneumonia infection in Benue state has been explained by 

independent variables while the remaining 23.84% unexplained variations is being accounted for by the error 

term or by factors not included in the model. The value of Durbin Watson statistic is 1.9962 which is 

approximately 2 indicating that the model is not spurious and there is no positive serial correlation in the residuals 

of the estimated model. 

Stability and invertibility analysis of the model 

An evidence to show that the estimated ARIMA model is dynamically stable is that the inverse roots of AR/MA 

polynomials should all lie within a unit circle. The table of AR/MA polynomial roots of estimated ARIMA 

(5,1,2) model is reported in Table 6.  

From the results of the AR/MA polynomial roots of the estimated model reported in Table 6, it is observed that 

all the roots lied inside a unit circle and the model is dynamically stable and satisfied the stability and invertibility 

conditions. From the root of AR and MA polynomials of the fitted model presented in Table 6, sum ofAR roots =
4.0605 and sum of MA roots = 1.9016 and we estimate that tan𝜃 = 𝑦 𝑥⁄ = 4.0605 1.9016⁄ = 2.1353  and 

𝜃 = 64.3°. Thus, the life cycle of pneumocystis pneumonia infection among the farming population in Benue 

state is computed as 360° 64.3° = 5.5988 ≈ 6⁄  months and we say that pneumocystis pneumonia infection 

among the farming population of Benue state has a life cycle of 6 months which could be described as chronic, 

a disease condition in which if not properly controlled, prevented and treated will have severe complications and 

high risk of developing into serious infection and death. 

Table 6: AR/MA Polynomial Roots of Estimated ARIMA (5,1,2) Model 

 Root Real Imaginary Modulus 

 AR Root 1  0.44 -0.86 0.9660 

Root 2  0.44 0.86 0.9660 

Root 3  -0.04 -0.66 0.6612 

Root 4 -0.04 0.66 0.6612 

Root 5  -0.57 0.57 0.8061 

MA Root 1  0.36 0.88 0.9508 

Root 2  0.36 -0.88 0.9508 
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ARIMA (5,1,2) model validation and diagnostic checks 

After the model fit, the adequacy of the model is being checked by examining the goodness of fit by means of 

plotting the ACF and PACF of residuals of the fitted model. If most of the sample autocorrelation coefficients 

of the residuals are within the confidence limits ±1.96/√𝑇  where T is the number of observations upon which 

the model is based, then the residuals are said to be white noise indicating that the model is a good fit. The Ljung-

Box Q-statistics test is also conducted on the residuals to check the presence of serial correlation 

(autocorrelation) in the residuals of the estimated ARIMA (5,1,2) model. The ACF and PACF plots are reported 

in Figure 5 while the Q-statistic test results are presented in Table 7. 

 

Figure 5: ACF and PACF of Residuals of the Estimated ARIMA (5,1,2) Model 

Table 7: Autocorrelation functions and Ljung-Box Q-statistics Test for Residuals 

Lag ACF PACF Q-Statistics p-value 

1 -0.091 -0.107 5.9935 0.150 

2 0.019 -0.004 6.0545 0.109 

3 -0.009 -0.037 6.0701 0.194 

4 -0.091 -0.127 7.5269 0.184 

5 0.080 0.040 8.6746 0.193 

6 0.175 0.141 14.166 0.148 

7 -0.055 -0.091 14.716 0.165 

8 0.036 0.009 14.950 0.192 

9 0.017 -0.001 15.003 0.132 

10 0.104 0.100 17.012 0.108 

15 -0.006 0.013 22.691 0.122 
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20 -0.074 -0.122 24.869 0.253 

24 0.074 -0.014 28.321 0.293 

The ACF and PACF plots in Figure 5 shows that all the sample autocorrelation coefficients of the residuals are 

within the confidence bounds indicating that the residuals are white noise and the fitted model is stable and 

stationary. It is therefore concluded that the model is adequate, valid and good and should be used for forecasting. 

From the results of Table 7, the null Hypothesis of no serial correlation in the residuals of the fitted ARIMA 

(5,1,2) model at all lags is not rejected since the p-values of the Q-statistics are all greater than 0.05. This shows 

that the estimated model is stationary and dynamically stable.  

Forecast evaluation results 

Having validated our model, we now seek an appropriate forecast mode that best forecast future relevant series. 

Here we consider in-sample and out-of-sample forecasts using two accuracy measures namely: Root Mean 

Square Error (RMSE) and Mean Absolute Error (MAE). The forecast mode with the least accuracy measures 

stands as the best to predict pneumocystis pneumonia infection cases Benue state of Nigeria. The result of 

forecast comparison is presented in Table 8.  

From Table 8, we consider two benchmarks: Root Mean Square Error (RMSE) and Mean Absolute Error (MAE) 

to compare the in-sample and out of sample forecasts performance of the estimated ARIMA (5,1,2) model to 

evaluate its forecast ability and to decide on which mode of forecast is better for the model. We observe that the 

RMSE and MAE of the out-of sample forecast are smaller than those of the  in-sample forecast, and the decision 

is that the smaller the forecast errors, the better the forecasting ability of that model, according to the criterion, 

our model is good for future forecast. 

Table 8: Forecast Comparison using Accuracy Measures 

Performance Metrics In-Sample Forecast Out-of-Sample Forecast ** 

RMSE 0.174360 0.149735 

MAE 0.112941 0.104349 

Note: ** denotes forecast mode selected by accuracy measures. 

Short-Term Forecast of Pneumocystis Pneumonia Infection Cases in Benue State 

Having selected the out-of-sample forecast approach for the series, we use the estimated ARIMA (5,1,2) model 

to forecast future values of pneumocystis pneumonia infection cases in the study area for the period of 2 years 

(24 months) starting from January 2024 to December 2025. The result of the forecast is presented in Table 9. 

Table 9: Forecast of Pneumocystis Pneumonia Infection Cases in Benue State from January 2024-December, 

2025 

Year: Month Forecast (natural log form) Actual Forecast (No. of Infections) 

Forecast Std. error LCL Forecast UCL 

2023:12 6.51026 - - 672 - 

2024:01 6.52156 0.147412 509 680 907 

2024:02 6.51315 0.166426 486 674 934 
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2024:03 6.50082 0.179964 468 666 947 

2024:04 6.50402 0.190752 460 668 971 

2024:05 6.52355 0.201601 459 681 1011 

2024:06 6.53840 0.209167 459 691 1041 

2024:07 6.53746 0.221301 448 691 1066 

2024:08 6.52734 0.237553 429 684 1089 

2024:09 6.52296 0.250826 416 681 1113 

2024:10 6.53150 0.258418 414 687 1139 

2024:11 6.54672 0.264286 415 697 1170 

2024:12 6.55600 0.272062 413 704 1199 

2025:01 6.55373 0.283060 403 702 1222 

2025:02 6.54672 0.294677 391 697 1242 

2025:03 6.54626 0.303677 384 697 1263 

2025:04 6.55592 0.309951 383 703 1291 

2025:05 6.56841 0.315667 384 712 1322 

2025:06 6.57408 0.322980 380 716 1349 

2025:07 6.57119 0.332267 372 714 1370 

2025:08 6.56703 0.341431 364 711 1389 

2025:09 6.56962 0.348567 360 713 1412 

2025:10 6.57930 0.354090 360 720 1441 

2025:11 6.58903 0.359669 359 727 1471 

2025:12 6.59226 0.366617 356 729 1497 

Total 157.13703   16745  

Average 6.5473625   697.70833  

Note: For 95% confidence intervals, 𝑍0.025 = 1.96. LCL and UCL denote lower and upper confidence limits 

respectively. 

The forecast presented in Table 9 that the  forecast of pneumocystis pneumonia infection value for the month of 

January, 2024 was 680 cases with a 95% confidence interval of [509, 907] cases. By this we are 95% confident 

that the outcome of pneumocystis pneumonia infection in the study area for the next period will fall within this 

interval. Comparing with the monthly infection in the month of December 2023 which was (672 cases), it is 

predicted that in January 2025 the pneumocystis pneumonia infection will slightly increase from the current 
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month by 8 cases. The interval [509, 907] cases imply that the increase in the number of pneumocystis 

pneumonia infection cases in the month of January, 2024 may lie between 509 and 907 persons (i.e., it may 

reduce by at least 163 cases or increase by at most 235 cases) in the month of January, 2024. The forecast shows 

that at least 666, 691, 681 and 704 persons will be infected with pneumocystis pneumonia in Benue state in the 

months of March, 2024, June, 2024, September, 2024 and December, 2024 respectively. Also, about 697, 716, 

713 and 729 persons are predicted to be infected with the disease in the months of March, 2025; June, 2025; 

September, 2025 and December, 2025 respectively. The forecast also shows that at least a total of 16,745 persons 

will be infected with pneumocystis pneumonia in the study area within the period of two years from January, 

2024 to December, 2025 with an average of 698 infections cases per month.The forecast shows an increasing 

and fluctuating trend in the level of pneumocystis pneumonia infection in Benue state of Nigeria over the 

forecasted period typical of the trend found in the original series. The confidence intervals of the forecast also 

follow this increase in the trend level of infection during the forecasted period from January 2024 to December 

2025.  

Forecast Reliability Test using Paired Sample t-test 

We test the reliability and accuracy of the pneumocystis pneumonia infection forecast values to ascertain whether 

a significant difference exist between the observed actual infection cases and the forecast values by a mere 

comparison of the actual infection cases and the point forecast values through a paired sample t-test as presented 

in Table 10. We have restricted the test to a few forecast values (January 2018 to December 2019) because long 

term forecast is not advisable for obvious reasons. 

Let 𝜇0  represents the observed mean of pneumocystis pneumonia infection cases and let 𝜇𝐹  represents the 

forecast mean. Then we state the following hypothesis: 

𝐻0: 𝜇0 − 𝜇𝐹 = 0: There is no significant difference between the observed mean and forecast mean. 

𝐻1: 𝜇0 − 𝜇𝐹 ≠ 0: There is a significant difference between the observed mean and forecast mean. 

Failure to reject the null hypothesis implies that our forecast is reliable, accurate and valid. The result is presented 

in Table 10. 

Table 10: Paired-Sample t-Test between Actual and Forecast Values 

 Paired Differences t-stat. Df p-value 

Actual-

Forecast 

Mean  SD SE 95% of the Diffs. 

-0.01875 0.16674 0.03404 -0.089 0.05166 -0.551 23 0.587 

From the result of the paired-sample t-test presented in Table 10, we fail to reject the null hypothesis at 5% level 

of significance and reasonably conclude with 95% confident that the difference between the observed 

pneumocystis pneumonia infection values and the forecast values are equal to zero or more technically not 

statistically significantly different from zero. This conclusion is made on the basis of the large p-value of 0.587 

which is greater than 0.05. Alternatively, we can equally infer from the 95% confidence interval (-0.089, 

0.05166) that the interval contains zero. Since we failed to reject the null hypothesis, we therefore conclude that 

our forecast values of pneumocystis pneumonia infection cases in Benue state are reliable, valid and accurate 

and can be relied upon for policy implementation. 

CONCLUSION AND RECOMMENDATIONS 

This study successfully applied time series analysis using the ARIMA (5,1,2) model to forecast short-term trends 

of Pneumocystis pneumonia (PCP) infection cases in Benue State, Nigeria. The findings reveal that PCP 

infections follow a cyclical pattern with a six-month recurrence period, highlighting the chronic and potentially 

life-threatening nature of the disease if not effectively managed. The ARIMA model demonstrated strong 
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predictive power, explaining 76.16% of the variance in the data, and was used to project future infection trends 

for the period of January 2024 to December 2025. The forecast indicates a fluctuating yet increasing trend in 

PCP cases, with an average monthly infection rate of 698 cases.The study underscores the importance of data-

driven public health planning, demonstrating that time series forecasting can provide reliable insights for disease 

surveillance, healthcare resource allocation, and policy development. The validated forecast model offers a 

valuable tool for health authorities to anticipate and mitigate potential surges in PCP infections through targeted 

interventions. This study contributes to the field of epidemiological modeling by providing a robust framework 

for forecasting infectious diseases, demonstrating that time series analysis can play a critical role in enhancing 

public health preparedness and response strategies. 

The following recommendations are presented based on the study’s findings: 

1. Health authorities in Benue State should enhance data collection and surveillance mechanisms for PCP 

infections to ensure timely detection of trends and outbreaks. Regular updates to the time series data will 

improve the accuracy of future forecasts and inform better policy decisions. 

2. Given the chronic and life-threatening nature of PCP infections, healthcare facilities should be equipped 

with advanced diagnostic tools and trained personnel to facilitate early detection and prompt treatment, 

reducing disease progression and mortality rates. 

3. The study’s findings on the six-month PCP infection cycle highlight the need for periodic public health 

interventions, such as awareness campaigns, preventive treatment strategies, and community outreach 

programs, to mitigate transmission risks and reduce infection rates. 

4. The validated ARIMA model should be integrated into public health planning to anticipate healthcare 

demands. This will help allocate resources effectively, ensuring sufficient medical supplies, hospital 

capacity, and healthcare personnel in anticipation of projected PCP infection trends. 
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