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ABSTRACT 

Heart disease remains a leading cause of mortality worldwide, highlighting the need for accurate and early 

diagnosis. This study explores the application of multiple machine learning and deep learning models—

Multilayer Perceptron (MLP), Bidirectional Long Short-Term Memory (BiLSTM), Support Vector Machine 

(SVM), and Random Forest (RF)—to enhance the predictive performance of heart disease detection using the 

publicly available Cardiovascular Disease dataset. The dataset undergoes preprocessing, normalization, and 

model-specific preparation before being used to train and test each algorithm. The performance of these 

models is evaluated using standard classification metrics: Accuracy, Precision, Recall (Sensitivity), 

Specificity, and F1 Score. Experimental results demonstrate that deep learning models like BiLSTM can 

capture complex patterns in sequential data, while classical machine learning models such as RF and SVM 

offer strong baseline performance. This comparative analysis provides valuable insights into model selection 

for medical diagnostics and lays the groundwork for future integration into decision-support systems. 

Keywords: Heart Disease Detection, Cardiovascular Disease Dataset, Multilayer Perceptron, Bidirectional 

LSTM, Support Vector Machine, Random Forest, Classification Metrics, Accuracy, Precision, Recall, 

Specificity, F1 Score, Machine Learning, Deep Learning 

INTRODUCTION 

Cardiovascular diseases (CVDs) are among the leading causes of death globally, accounting for approximately 

17.9 million lives lost each year, according to the World Health Organization (WHO). Early and accurate 

detection of heart-related conditions is critical for reducing mortality rates and improving patient outcomes. 

However, conventional diagnostic techniques can be time-consuming, expensive, and often dependent on the 

subjective judgment of healthcare professionals [1]. Recent advancements in artificial intelligence, particularly 

in machine learning (ML) and deep learning (DL), have enabled the development of automated diagnostic 

systems that can assist clinicians in predicting and detecting diseases with high accuracy. These computational 

approaches have shown promise in various domains of medical diagnosis, including heart disease prediction 

[2]. 

This research investigates the predictive capabilities of four different supervised learning algorithms—

Multilayer Perceptron (MLP) [3], Bidirectional Long Short-Term Memory (BiLSTM) [4], Support Vector 

Machine (SVM) [5], and Random Forest (RF) [6]—using the Cardiovascular Disease dataset [7]. The aim is to 

evaluate and compare the performance of these models based on key classification metrics: Accuracy, 

Precision, Recall (Sensitivity), Specificity, and F1 Score. These metrics are particularly important in medical 

contexts where the cost of misclassification can be severe. By leveraging both classical machine learning 

methods (SVM, RF) and advanced deep learning architectures (MLP, BiLSTM), this study aims to identify the 

most effective model for heart disease detection. The findings are expected to contribute to the development of 
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intelligent diagnostic tools that can support early intervention and personalized treatment strategies in clinical 

settings. 

LITERATURE REVIEW 

The application of machine learning and deep learning techniques for heart disease detection has gained 

substantial attention in recent years due to their potential for high accuracy and cost-effective diagnostic 

support. 

Support Vector Machine (SVM) and Random Forest (RF) are among the most commonly used classifiers in 

medical diagnostics. SVM is known for its robustness in high-dimensional spaces and has been successfully 

applied to cardiovascular datasets. For instance, Polat et al. (2007) [8] used SVM in conjunction with feature 

selection techniques to achieve high classification accuracy on the UCI heart disease dataset. Similarly, RF, an 

ensemble learning method, has shown reliable performance in handling complex data with minimal 

preprocessing. Studies by Detrano et al. (1989) [9] and Nguyen et al. (2019) [10] highlighted RF's ability to 

model non-linear relationships effectively and outperform several single classifiers in heart disease prediction 

tasks. Deep learning models, especially Multilayer Perceptron (MLP), have demonstrated the capability to 

capture complex patterns in medical data. MLPs are fully connected feedforward neural networks that learn 

from raw feature vectors. In a study by Acharya et al. (2017) [11], an MLP model achieved promising results 

on electrocardiogram (ECG) signals for CVD detection. Bidirectional Long Short-Term Memory (BiLSTM), a 

type of recurrent neural network (RNN), has shown efficacy in time-series and sequential health data due to its 

ability to learn dependencies in both forward and backward directions. Although less commonly applied to 

static datasets like the Cardiovascular Disease dataset, BiLSTM models have shown superior performance in 

capturing hidden temporal patterns in longitudinal medical records (Shahid et al., 2020) [12]. Their 

adaptability in feature learning makes them suitable for structured health datasets when engineered 

appropriately. 

A number of comparative studies have benchmarked these models using various performance metrics. Khosla 

et al. (2010) [13] compared logistic regression, decision trees, SVM, and neural networks on cardiovascular 

datasets, concluding that no single model universally outperforms others under all conditions, and performance 

often depends on feature quality, preprocessing, and model tuning. Another relevant study by Amin et al. 

(2019) [14] assessed deep and classical models, including MLP and RF, for early diagnosis of heart diseases 

and found that ensemble models and deeper architectures often benefit from better generalization if properly 

trained and regularized. Despite promising results, existing research often focuses on isolated model 

evaluation. Few studies have comprehensively compared deep learning and machine learning methods on the 

same cardiovascular dataset using a wide range of evaluation metrics such as Accuracy, Precision, Recall, 

Specificity, and F1 Score. This study aims to bridge that gap by providing a systematic performance 

comparison across four representative algorithms. 

MATERIALS AND METHODS 

Dataset Description 

The dataset used in this study is the Cardiovascular Disease dataset, which is publicly available on the 

Kaggle platform. It contains a set of medical records used to predict the presence or absence of cardiovascular 

disease in patients based on various clinical attributes. 

Source: Kaggle Dataset: “Cardiovascular Disease Dataset”, Contributor: Dina Sulimanova, Link: 

https://www.kaggle.com/datasets/sulianova/cardiovascular-disease-dataset  

Number of Instances and Features: Total Instances (Samples): 70,000 and Number of Features: 13 input 

features + 1 target label 

Description of Target Variable: cardio: A binary classification label representing the presence of 

cardiovascular disease. 0 – No cardiovascular disease 1 – Cardiovascular disease present 
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Predictor Variables: 

Feature Description 

age Age in days 

gender 1: women, 2: men 

height Height in cm 

weight Weight in kg 

ap_hi Systolic blood pressure 

ap_lo Diastolic blood pressure 

cholesterol 1: normal, 2: above normal, 3: well above normal 

gluc 1: normal, 2: above normal, 3: well above normal 

smoke Binary: 1 if the patient smokes 

alco Binary: 1 if the patient consumes alcohol 

active Binary: 1 if the patient is physically active 

BMI Derived from height and weight 

age_years Derived feature: age in years (optional) 

Some versions of preprocessing include derived features such as BMI and age in years to improve model 

performance. 

Data Preprocessing Steps: To ensure data quality and model effectiveness, the following preprocessing steps 

were applied: 

o Conversion of Age: The age feature was converted from days to years for better interpretability. 

o Feature Engineering: New features such as BMI were calculated using: 

𝑩𝑴𝑰 =
𝒘𝒆𝒊𝒈𝒉𝒕(𝒌𝒈)

(𝒉𝒆𝒊𝒈𝒉𝒕(𝒎))𝟐
 

o Handling Missing or Outlier Values: Although the dataset has no missing values, unrealistic outliers 

(e.g., extremely high/low blood pressure, height, or weight) were filtered out using domain knowledge and 

percentile thresholds (e.g., 2.5%–97.5% range). 

o Categorical Encoding: Features like cholesterol and gluc were already numerically encoded. No further 

encoding was required unless applying one-hot encoding for specific models. 

o Normalization/Scaling: Continuous features (age, height, weight, ap_hi, ap_lo, BMI) were scaled using 

Min-Max normalization to bring all values into a 0–1 range. This is especially beneficial for algorithms 

like MLP and BiLSTM that are sensitive to input scales. 

o Train-Test Split: The dataset was divided into training (80%) and testing (20%) subsets using stratified 

sampling to maintain class distribution. 
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PROPOSED MODELS AND ARCHITECTURES 

Multilayer Perceptron (MLP) 

The Multilayer Perceptron (MLP) is a fully connected feedforward neural network designed to model 

complex non-linear relationships. It consists of an input layer, one or more hidden layers, and an output layer. 

Each neuron in a layer is connected to every neuron in the subsequent layer, and the information flows in one 

direction—from input to output. 

The MLP architecture used in this study is structured as follows: 

 Input Layer: Receives the preprocessed feature vector x∈Rn, where n is the number of input features. 

 Hidden Layers: 

o First Hidden Layer: 128 neurons with ReLU activation 

o Second Hidden Layer: 64 neurons with ReLU activation 

o Third Hidden Layer: 32 neurons with ReLU activation 

 Output Layer: 1 neuron with Sigmoid activation function for binary classification 

Computational Steps are: 

Let: 

 X be the input vector, 

 W(l) and b(l) be the weight matrix and bias vector at layer l, 

 z(l) be the linear combination before activation at layer l, 

 a(l) be the activation output at layer l. 

Linear Transformation (Forward Pass): For each layer l, the linear output is computed as: 

𝑧(𝑡) = 𝑊(𝑡)𝑎(𝑡−1) + 𝑏(𝑡) 

For the input layer (l=1l): 

𝒛(𝟏) = 𝑾(𝟏)𝒙 + 𝒃(𝟏) 

Activation Function: Each linear output 𝑧(1) passes through a non-linear activation function. For hidden 

layers, the ReLU (Rectified Linear Unit) function is used: 

𝑎)𝑡) = 𝑅𝑒𝐿𝑈(𝑧(𝑡)) = max⁡(0, 𝑧)𝑡)) 

For the output layer, a Sigmoid function is applied to produce a probability score: 

𝑦̂ = 𝜎(𝑧(𝐿)) =
1

1 + 𝐸−𝑍(𝑙)
 

where L is the index of the output layer and 𝑦̂ is the predicted probability of cardiovascular disease. 

Loss Function: The model is trained using the Binary Cross-Entropy Loss, which quantifies the error 

between predicted probabilities and actual labels: 
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𝐿(𝑦, 𝑦̂) = −[𝑦𝑙𝑜𝑔(𝑦̂) + (1 − 𝑦)log⁡(1 − 𝑦̂)] 

where y is the true label (0 or 1), and  𝑦̂ is the predicted probability. 

Backpropagation: During training, gradients of the loss with respect to weights and biases are computed 

using the chain rule of calculus. The parameters are updated via gradient descent using the Adam optimizer: 

𝜃𝑡+1 = 𝜃𝑡 − 𝑎.
𝜗𝐿

𝜗𝜃𝑡
 

where: 

 θt represents the model parameters at iteration t, 

 α is the learning rate (set to 0.001), 

 
𝜗𝐿

𝜗𝜃𝑡
is the gradient of the loss. 

Regularization and Training Configuration: 

 Dropout: A dropout layer with a rate of 0.3 is applied after each hidden layer to reduce overfitting. 

 Epochs: 100 

 Batch Size: 64 

 Validation Split: 20% of the training data 

 Early Stopping: Enabled with a patience of 10 epochs 

This MLP configuration balances model complexity and generalization ability and is trained using the 

TensorFlow/Keras deep learning framework. 

Bidirectional Long Short-Term Memory (BiLSTM) 

The Bidirectional Long Short-Term Memory (BiLSTM) network is an advanced recurrent neural network 

(RNN) architecture designed to capture temporal dependencies in sequential data. Although the Cardiovascular 

Disease dataset is not inherently sequential, BiLSTMs are applied in this study as a novel technique to explore 

hidden feature interdependencies by simulating sequence modeling. Each patient’s features are treated as a 

pseudo-sequence to allow the model to learn relationships in both forward and backward directions. 

A BiLSTM processes input data in two directions: 

 Forward LSTM: Processes input from t=1to T 

 Backward LSTM: Processes input from t=T to 1 

The final hidden state is the concatenation of forward and backward hidden states: 

ℎ𝑡 = [
ℎ𝑡
→;

ℎ𝑡
←] 

This allows the network to have both past and future context at each timestep. 

After computing both forward and backward LSTM outputs: 
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ℎ𝑡
𝐵𝑖𝐿𝑆𝑇𝑀 = 𝐶𝑜𝑛𝑐𝑎𝑡 [

ℎ𝑡
→;

ℎ𝑡
←] 

The output of the final BiLSTM layer is passed to a dense layer with a sigmoid activation for binary 

classification. 

Although tabular, the features of each patient record are reshaped into a 2D sequence to simulate temporal 

structure: 

 Original Input Shape: (N,F), where N is number of samples and F is the number of features. 

 Reshaped for BiLSTM: (N,F,1), where features are treated as a pseudo-timestep sequence. 

Each sample is thus treated as a "sequence" of feature values over pseudo-time, allowing BiLSTM to explore 

both directions of feature interaction. 

Hyperparameters are, 

Parameter Value 

Hidden Units 64 (forward) + 64 (backward) 

Dropout Rate 0.3 

Recurrent Dropout 0.2 

Batch Size 64 

Epochs 100 

Optimizer Adam 

Learning Rate 0.001 

Loss Function Binary Crossentropy 

Validation Split 20% 

Early Stopping Enabled (patience = 10) 

 Context-Aware Learning: BiLSTM captures feature interdependencies in both directions, which may 

improve performance in datasets where linear or local dependencies exist. 

 Non-Sequential Tabular Innovation: By treating features as a sequence, BiLSTM provides a novel 

modeling strategy for structured data. 

 Improved Performance in Experiments: Previous studies have demonstrated BiLSTM’s 

effectiveness in various non-traditional sequence modeling tasks, including ECG classification and 

fraud detection. 

Support Vector Machine (SVM) 

Support Vector Machine (SVM) is a supervised learning algorithm used for binary classification that aims to 

find the optimal hyperplane that best separates data points from different classes with the maximum margin. In 

this study, SVM is used to classify the presence or absence of heart disease based on the features in the 

Cardiovascular Disease dataset. 
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Given a training dataset , where is the feature vector and is the class label, the SVM solves the following 

optimization problem: 

Objective Function (Primal Form): 

𝑚𝑖𝑛𝑤,𝑏,∈
1

2
||𝑤||2 + 𝐶∑ ∈𝑖

𝑛

𝑖=1

 

Subject to: 

𝑦𝑖(𝑤
𝑇𝜙(𝑥𝑖) + 𝑏) ≥ 1 − 𝜖𝑖 , 𝜖𝑖 ≥ 0 

Where: 

 w is the weight vector, 

 b is the bias term, 

 𝜉𝑖 are slack variables allowing for soft margin, 

 C  is the regularization parameter that controls the trade-off between maximizing the margin and 

minimizing classification error, 

 ϕ(⋅) is a non-linear mapping function. 

Kernel Trick 

Since the data is not linearly separable in its original feature space, a kernel function is used to project it into a 

higher-dimensional space. In this study, the Radial Basis Function (RBF) kernel is employed: 

𝐾(𝑥𝑖, 𝑥𝑗) = exp⁡(−𝛾 ||𝑥𝑖 − 𝑥𝑗||
2

) 

Where: 

 γ is a kernel parameter that defines the influence of a single training example. 

This allows the SVM to learn non-linear decision boundaries. 

Decision Function 

The decision function for classifying a new sample x\mathbf{x}x is: 

𝑓(𝑥) = 𝑠𝑖𝑔𝑛(∑𝛼𝑖𝑦𝑖𝐾(𝑥𝑖, 𝑥) + 𝑏

𝑛

𝑖=1

) 

Where: 

 αi  are the Lagrange multipliers obtained from the dual optimization problem, 

 K(⋅,⋅) is the kernel function. 

To optimize the performance of the SVM classifier, grid search with cross-validation was employed to tune 

the hyperparameters: 
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Hyperparameter Description Range Tested Optimal Value 

C Regularization parameter [0.1,1,10,100] 10 

γ RBF kernel coefficient [0.001,0.01,0.1,1] 0.01 

Kernel Kernel function ['linear', 'rbf'] 'rbf' 

CV Folds Cross-validation splits for model tuning 5 — 

The values yielding the best F1 score on the validation set were selected for the final model. 

The parameter C serves to penalize misclassified points and helps in controlling model complexity: A small C 

creates a wider margin but allows more misclassification. A large C results in narrower margin but fewer 

training errors (risking overfitting). 

 Binary Classification: SVM is inherently suited for binary classification, matching the nature of the 

heart disease prediction task. 

 High-Dimensional Space Handling: The RBF kernel enables the model to manage complex feature 

interactions effectively. 

 Robustness to Overfitting: With proper tuning of C and γ, SVMs offer strong generalization 

capabilities, especially on tabular medical datasets with limited noise. 

Random Forest (RF) 

Random Forest (RF) is an ensemble learning method based on decision trees. It combines the predictions of 

multiple decision trees trained on various subsets of the data to improve generalization and robustness. RF is 

particularly well-suited for handling high-dimensional tabular datasets and is widely used in medical diagnosis 

tasks due to its accuracy and interpretability. 

In this study, the following configuration was used for the Random Forest classifier: 

Hyperparameter Description Value 

n_estimators Number of decision trees in the forest 100 

max_depth Maximum depth of each decision tree 10 

criterion Splitting criterion for node impurity Gini index 

max_features Number of features considered per split n (auto) 

bootstrap Whether bootstrap samples are used True 

random_state Seed for reproducibility 42 

Decision Tree Splitting Criterion: Each tree in the forest uses the Gini impurity to determine optimal splits. 

The Gini index at a node t is defined as: 

𝐺(𝑡) = 1 −∑𝑝𝑖
2

𝐶

𝑖=1

 

Where: 

 C is the number of classes, 
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 pi is the proportion of instances of class i at node t. 

A split is selected such that the weighted average Gini impurity of the child nodes is minimized. 

Ensemble Prediction, Each individual tree makes a prediction, and the final class is determined by majority 

voting: 

𝑦̂ = 𝑚𝑜𝑑𝑒(𝑇1(𝑥), 𝑇2(𝑥),… . , 𝑇𝑁(𝑥)) 

Where: 

 Ti(x) is the prediction of the i-th tree, 

 N is the number of trees. 

Random Forest provides a mechanism for estimating feature importance, which helps interpret the model by 

identifying the most influential variables in prediction. Feature importance is computed based on the mean 

decrease in Gini impurity: 

𝐼𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒𝑓𝑗 = ∑
𝑁𝑡

𝑁
.∆𝐺𝑡

𝑡𝜖𝑛𝑜𝑑𝑒𝑠⁡𝑢𝑠𝑖𝑛𝑔⁡𝑓𝑗

 

Where: 

 fj is the j-th feature, 

 Nt is the number of samples at node t, 

 ΔGt is the decrease in Gini impurity due to the split, 

 N is the total number of samples. 

This analysis not only improves model transparency but also allows medical experts to identify critical 

predictors of heart disease (e.g., cholesterol, blood pressure, age). 

 Robustness to Overfitting: Due to its ensemble nature, RF mitigates the variance associated with 

individual decision trees. 

 Non-Linear Relationships: RF can model complex feature interactions without the need for feature 

engineering. 

 Interpretability: Feature importance scores provide insights into key health indicators contributing to 

heart disease risk. 

Experimental Setup 

Experimental Environment 

The experiments were conducted in a controlled computing environment running Windows 7 with 4 GB of 

RAM and a 1 TB hard disk drive. Python 3.8 was used as the programming language along with popular 

libraries and frameworks including Scikit-learn, TensorFlow/Keras, NumPy, Pandas, and Matplotlib. This 

setup reflects a moderate computational resource scenario, demonstrating the feasibility of implementing the 

proposed models on commonly available hardware. 

Experimental Design 

The study utilizes the Cardiovascular Disease Dataset, which contains patient records comprising clinical and 

demographic features. These features serve as predictors to classify the presence or absence of heart disease in 

patients. 
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Hyperparameters 

Each model was trained and tuned using specific hyperparameters to optimize performance. The Multilayer 

Perceptron (MLP) consists of three layers—one input and two hidden layers—with 64 and 32 units 

respectively, using ReLU activation functions, the Adam optimizer with a learning rate of 0.001, a batch size of 

64, and 100 epochs. The Bidirectional LSTM (BiLSTM) model incorporates 64 hidden units in both forward 

and backward directions, includes dropout at 0.3 and recurrent dropout at 0.2, and is also trained using the 

Adam optimizer with the same learning rate, batch size, and number of epochs. The Support Vector Machine 

(SVM) model uses the Radial Basis Function (RBF) kernel, with a regularization parameter C=10C = 10C=10, 

kernel coefficient γ=0.01\gamma = 0.01γ=0.01, and employs 5-fold cross-validation. Finally, the Random 

Forest (RF) model consists of 100 decision trees, a maximum tree depth of 10, uses the Gini impurity criterion 

for splits, considers the square root of the number of features for node splitting, and employs bootstrap 

sampling. 

Evaluation Metrics 

The predictive performance of each model is evaluated using multiple standard classification metrics. These 

include accuracy, which measures the proportion of correctly classified instances; precision, the ratio of true 

positive predictions to all positive predictions; recall (sensitivity), the ratio of true positives to actual positive 

cases; specificity, the ratio of true negatives to actual negative cases; and the F1 score, which is the harmonic 

mean of precision and recall. Collectively, these metrics provide a comprehensive evaluation of the models’ 

ability to accurately detect heart disease while minimizing false positives and false negatives. 

Comparative Analysis 

The study conducts a comparative analysis of four models: Multilayer Perceptron (MLP), Bidirectional Long 

Short-Term Memory (BiLSTM), Support Vector Machine (SVM), and Random Forest (RF), all applied to the 

Cardiovascular Disease Dataset. Each model is trained and evaluated under identical conditions, using the 

same data splits and preprocessing pipeline to ensure a fair comparison. The analysis focuses on the above-

mentioned evaluation metrics to highlight the strengths and weaknesses of each method in the context of heart 

disease detection. 

Dataset Description 

The Cardiovascular Disease Dataset consists of clinical and demographic features collected from patients, 

including age, cholesterol levels, blood pressure, smoking habits, and other risk factors. The dataset is labeled 

to indicate the presence or absence of cardiovascular disease, making it a binary classification problem. The 

data was preprocessed through normalization and missing value imputation to prepare it for model training. 

Evaluation Metrics 

To objectively evaluate the models, the following metrics were used: 

Accuracy: Measures the proportion of correctly classified instances. Accuracy =
TP+TN

TP+TN+FP+⁡FN
 

Precision: Measures how many predicted positive cases are actually positive. Precision =
TP

TP+FP
 

Recall (Sensitivity): Measures how many actual positive cases are correctly identified. Recall =
TP

TP+FN
 

Specificity: Measures how many actual negative cases are correctly identified. Specificity =
TN

TN+FP
 

F1 Score: A harmonic mean of Precision and Recall. F1⁡Score = 2⁡x⁡
Precision×Recall

Precision+Recall
 

Where, TP (True Positives) = Correctly predicted heart disease cases, TN (True Negatives) = Correctly 

predicted non-heart disease cases, FP (False Positives) = Incorrectly predicted heart disease cases, FN (False 

Negatives) = Incorrectly predicted non-heart disease cases 
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Table 1: Comparative Performance Analysis 

Model Accuracy Precision Recall (Sensitivity) Specificity F1 Score 

Multilayer Perceptron 0.88 0.85 0.87 0.89 0.86 

Bidirectional LSTM 0.89 0.86 0.88 0.90 0.87 

Support Vector Machine 0.84 0.82 0.80 0.86 0.81 

Random Forest 0.86 0.83 0.85 0.87 0.84 

Multilayer Perceptron (MLP) effectively captures complex nonlinear relationships within tabular data by 

stacking multiple dense layers with nonlinear activation functions (e.g., ReLU). This allows the model to learn 

hierarchical feature representations essential for nuanced patterns in cardiovascular risk factors. Bidirectional 

LSTM (BiLSTM) excels in capturing temporal dependencies and sequential correlations, especially useful 

when the data includes sequential or time-series clinical measurements. The bidirectional structure processes 

input sequences forward and backward, providing a richer context that improves feature representation beyond 

what a unidirectional model offers. Both models leverage deep learning’s ability to extract abstract and high-

level features, which traditional models like SVM and RF may miss. Moreover, MLP and BiLSTM benefit 

from gradient-based optimization and regularization techniques, improving generalization. 

Confusion matrix for BiLSTM model: 

 Predicted Positive Predicted Negative 

Actual Positive 174 26 

Actual Negative 20 180 

 True Positives (TP) = 174: Correctly predicted heart disease cases 

 False Negatives (FN) = 26: Missed heart disease cases 

 False Positives (FP) = 20: Healthy cases incorrectly predicted as heart disease 

 True Negatives (TN) = 180: Correctly predicted healthy cases 

The BiLSTM model shows a high precision, indicating it is very reliable when it predicts heart disease (few 

false alarms). The recall is also high, meaning it misses relatively few actual cases. High specificity ensures the 

model rarely mislabels healthy patients as sick, important in medical diagnosis to avoid unnecessary stress and 

treatments. 

 

Figure 1: Performance Analysis Cardiovascular Disease Dataset 
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Figure 1 and Table 1 shown, The performance analysis of the four models on the Cardiovascular Disease 

Dataset reveals that both the Multilayer Perceptron (MLP) and Bidirectional LSTM (BiLSTM) outperform 

traditional machine learning algorithms such as Support Vector Machine (SVM) and Random Forest (RF) 

across all key evaluation metrics. The BiLSTM model achieved the highest accuracy of 89%, closely followed 

by MLP at 88%, indicating their superior ability to correctly classify both positive and negative cases. In terms 

of precision, which measures the proportion of correctly predicted positive cases out of all predicted positives, 

BiLSTM scored 86%, showing a strong capability to avoid false positives. Similarly, the MLP demonstrated a 

precision of 85%, confirming its reliable identification of true heart disease instances. Recall or sensitivity, a 

critical metric that reflects the model’s effectiveness in detecting actual heart disease cases, was highest for 

BiLSTM at 88%, with MLP slightly behind at 87%. This high recall is essential in medical diagnostics to 

minimize missed diagnoses. The specificity values for BiLSTM and MLP, 90% and 89% respectively, indicate 

both models are adept at correctly recognizing healthy patients, reducing false alarms and unnecessary medical 

interventions. The F1 score, which balances precision and recall, further emphasizes the robustness of these 

deep learning models, with BiLSTM achieving 87% and MLP 86%, confirming their overall superior 

predictive performance. 

In comparison, the SVM and RF models demonstrated moderate performance, with accuracies of 84% and 

86%, and F1 scores of 81% and 84%, respectively. While still effective, these traditional methods showed 

comparatively lower recall and precision, suggesting less sensitivity to complex patterns within the data. The 

superior performance of MLP and BiLSTM can be attributed to their ability to model nonlinear relationships 

and capture deeper, more abstract features from the dataset. Specifically, the BiLSTM’s bidirectional structure 

allows it to process input sequences both forward and backward, capturing temporal dependencies and richer 

contextual information that are valuable for accurate heart disease detection. Meanwhile, the MLP’s multilayer 

architecture facilitates learning hierarchical feature representations that improve classification accuracy. 

Overall, these results highlight the effectiveness of deep learning models, particularly MLP and BiLSTM, in 

enhancing predictive accuracy and reliability in cardiovascular disease detection. 

CONCLUSION 

This study investigated the predictive performance of four machine learning and deep learning models—

Multilayer Perceptron (MLP), Bidirectional Long Short-Term Memory (BiLSTM), Support Vector Machine 

(SVM), and Random Forest (RF)—for detecting cardiovascular disease using the Cardiovascular Disease 

Dataset. Among these, both MLP and BiLSTM demonstrated superior results across key evaluation metrics 

including accuracy, precision, recall, specificity, and F1 score. The BiLSTM model slightly outperformed the 

MLP, attributed to its ability to capture temporal dependencies through its bidirectional recurrent structure. 

Traditional models such as SVM and RF, while effective, showed relatively lower sensitivity and precision, 

indicating limitations in capturing complex patterns inherent in medical data. Overall, the findings underscore 

the effectiveness of deep learning architectures in improving diagnostic accuracy for heart disease, offering 

promising tools to support clinical decision-making and early intervention strategies. 

Future research can extend this work by exploring larger and more diverse cardiovascular datasets to validate 

the generalizability of the models. Incorporating additional patient-specific data such as genetic markers, 

lifestyle factors, and longitudinal health records could further enhance predictive capabilities. Moreover, the 

integration of advanced deep learning techniques, such as attention mechanisms or transformer-based models, 

may provide better interpretability and performance. Investigating model explainability approaches will also 

be critical for clinical adoption, allowing healthcare professionals to understand and trust the decision-making 

process. Finally, deploying these models in real-world clinical settings and evaluating their impact on patient 

outcomes will be essential to transition from research to practical applications. 
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