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ABSTRACT 

This study explores the analytical and numerical solutions of partial differential equations (PDEs), focusing on 

parabolic (heat). The first part presents their analytical solutions using initial and boundary conditions and delves 

into the finite difference method (FDM), discussing forward, backward, and central difference schemes. These 

methods are applied to numerically solve one- and two-dimensional heat. The Crank-Nicolson method, 

recognized for its unconditional stability, is employed to improve the accuracy of heat equation solutions, 

overcoming limitations of explicit and implicit schemes. We then analyze the performance, strengths, and 

weaknesses of FDM through numerical simulations of one-dimensional heat. Due to computational constraints, 

Crank-Nicolson for 1D simulation, was not executed. Results indicate that the implicit backward difference 

method demonstrates superior stability by allowing unrestricted step sizes compared to the explicit forward 

difference method. These findings contribute to a deeper understanding of numerical PDE solutions and stability 

considerations in computational mathematics. 

Keywords: PDEs, parabolic (heat) Equation, Crank-Nicolson Method   
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INTRODUCTION  

Many problems in physical phenomena, such as physics, applied science, and engineering, can be modelled 

mathematically with the help of techniques of partial differential equations (John H and Fink, 1992). When a 

function comprises two or more independent variables, the differential equation is aptly called partial differential 

equation. Since the functions of multitudinous variables are inherently more problematic compared those of one 

variable, partial differential equations may lead to some challenging tasks in numerical problems. In fact, finding 

numerical solutions to those problems requires a type of scientific calculation which needs the help of a 

computing system (Cheney and Kincaid, 2004).  

Numerous physical phenomena, which include electrostatic problems, heat conduction, fluid dynamics, 

electrodynamics, gravitational potential, can be modelled mathematically using  partial differential equations (or 

PDEs) with a set of initial conditions or initial boundary conditions (Everstine, 2010). PDEs form the solid 

bedrock of many mathematical models related to chemical, physical, and biological phenomena, and more 

recently their application has diffused into the fields of financial forecasting, economics, image processing and 

others. (Morton and Meyers, 2005). The partial differential equation depends on two or more independent 

variables. These variables can be time and one or more coordinates in space or plane (Erwin, 1976).                                                                

In the study of PDE’s such as heat and wave equations, there are particular kinds of boundary condition 

commonly associated with above equations. For the heat equation in term of boundary condition, the initial value 

of the solutions are defined but in a bounded domain. The Dirichlet condition on the boundary of the domain 

takes positive time (t). However, the classical boundary problem in the case of the wave is equation is the Cauchy 

problem because it defines both the initial position and initial velocity at 0t . 
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The stand for saying whether a boundary condition is appropriate for a particular PDE’s is physically difficult 

to understand. However, it can be explained by fundamental mathematical insight (Hadamard, 1923 as cited in 

Brezis and Browder, 1997).  

The onset of finite difference techniques in numerical application began in in the early 1950s and the emergence 

of computers that presented a convenient framework for dealing with complex problems of science and 

technology gave impetus to their development. The theoretical result has been found during the last five decades 

in term of the accuracy, consistency, stability and convergence of the finite difference method for partial 

differential equations (Fadugba and Adegboyegun, 2013). Furthermore, finite difference methods can be used to 

solve partial differential equations. This is done by approximating the differential equations over the area of 

integration by a system of algebraic equations. They also add that the finite difference approximations happened 

to be one of the simplest and oldest to solve partial differential equations. It was known by L. Euler since (1707-

1783) ca. 1768, in one-dimensional space and was probably extended to two-dimensional space by C. Runge in 

the years (1858-1927) ca. 1908.  

MATERIALS AND METHODS 

Formulation of Finite Difference  

 

Figure 1.1 

The FDM basically depends on Taylors’s theorem which states that:  A given function  xu  has a continuous 

derivative over some intervals and  xh equal spacing of grid work in the x direction as in the fig. 2.1 (Curtis 

and Patrick, 1994), then it follows that: 
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 (b)  0xux  is the derivative of u with respect to x evaluated at 0xx . 

 (c)  nhO  is an unknown error term defined. 

Since xh   then equations (2.1a) and (2.1b) become; 
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Taylor Series and Finite Difference 

Taylor series have been used to study the behaviour of numerical approximation to differential equations. Let us 

investigate the forward difference with Taylor series. To do so, we expand the function u at 1ix about the point

ix  (Miskandarani, 2016). 
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The Taylor series can rearrange to look as: 
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It is now obvious that the forward difference formula in (4) corresponds to truncating the Taylor series after the 

second expression. The right hand side of equation (5) is called truncation error, because it is committed in 

terminating the series. The truncation error can be defined as the difference between partial derivative and its 

finite difference representation. The notation “Big Oh” will be used to refer to truncation error so that

 ixOET . . Consequently, we can write: 
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The Taylor series expansion can be used obtain an expression for the truncation error corresponding to the 

backward difference formula: 
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Where 11   iii xxx . We can obtain an expression for the error corresponding to backward difference 

approximation of the first   derivative: 
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The truncation error of the backward difference is not the same as the forward difference. Though, their 

behaviour remains similar in terms of magnitude analysis and is linear in ix .                                    
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Notice that in both cases we have used the information provided at just two points to derive the approximation, 

and the error behaves linearly in both instances. Multiplying the first by 1 ix  and the second by ix  and adding 

both equations we have: 
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There are several points to note on the previous expression. One the approximation uses information about the 

functions u at three points like: ii xx ,1 and 1 ix . Two the truncation error is   ixOET .  and second order, 

meaning if the grid spacing is decreased by ½, the T.E. error too decreases by 
22 . Three, the preceding point can 

be made clearer on the important case where the grid spacing is constant:   .1 xxx ii   the expression 

simplified to:  
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Hence for an equally spaced grid the central difference approximation converges in quadratic form as :0x  
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Note that in equation (11), the central difference uses information at only two points. But it delivers twice the 

order of the other two methods. This property will generally hold whenever the grid spacing is constant and the 

set of points used in approximating the derivative, is symmetric (i.e. computational stencil). 

Parabolic Equation 1D 

Consider the finite difference method as a technique of approximating 1-dimensional heat transfer 
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The FD approximation for partial derivatives in the heat equation may lead to implicit, explicit, and crank 

Nicolson methods for either stability or instability, or divergence or slow convergence. But boundary conditions 

can determine the specific FD approximations (Suer, 2014). 

Explicit Method Forward Difference 

To discretize the heat equation in one dimensional from equation (12) we approximate the derivatives in x and 

y directions. By using grid work, as in the fig (2.1) above, to apply the central difference for the second derivative 

to the x  yields: 
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If  22 xh  , then: 
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And if tkd   then: 
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To employ the notation of the grid    jiji txujivv ,,,  , the difference equation will yield:  
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By rearranging we have  

          jivjivjiv
h

kk
jivjiv d ,1,2,1,1,

2
                              (17b)                            

Substituting 
2h

kkd we have: 

         jivjivjivjiv ,1,21,11,                                   (17c)                                               

Note that 
m

ab
h


 and 

N
Tk  both in x and t as number of step and number of size respectively. 

The matrix form is: 

 
 

 































1,

.

.

.

1,2

1,1

jmv

jv

jv











































210..0

.

....

....

00021

00021

  

 
 

 

























jmv

jv

jv

,

.

.

.

,2

,1  
 

 





























jmv

jv

jv

,1

.

.

.

,1

,0

     (18)                  

https://rsisinternational.org/journals/ijrias
https://rsisinternational.org/journals/ijrias
http://www.rsisinternational.org/


INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN APPLIED SCIENCE (IJRIAS) 

ISSN No. 2454-6194 | DOI: 10.51584/IJRIAS |Volume X Issue IV April 2025 

 

 

 

 

 

www.rsisinternational.org 
Page 956 

 
 

   

 

The local truncation errors are  kO  and  2hO  which is first order accurate in time and second order accurate 

in space. This is because they are the ones given the clear picture of the total error, as long as the method is 

stable. However, the initial and boundary conditions are known quantities  0,iv  for Mi ,...,1,0 and  jv ,0  and 

 jmv , for Nj ,...,1,0   corresponding to the bottom of rectangle in fig (1.1) 

Implicit Backward Difference 

Here, the same procedure is taken but, we replace the approximation of tu applied in the above derivation with 

the backward difference, so as to obtain linear implicit. 
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Where kt  and 22 hx   with the error term 
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improve the stability of the explicit method by implicit backward difference method.   

Substituting the discrete points as in equation (3.5a) yield: 
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By rearranging the equation (3.7b) we have: 
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The mm matrix form of equation (21) can be written as: 
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Cranck-Nicolson Method 

This method is unconditionally stable and also second order accurate in respect of both time and space. 

Previously, in the heat equation we noticed that, the explicit method is some time stable and the implicit method 

is all the times stable. When stable they both have error of order  2hkO  . The step size k  requires being fairly 

small to have good accuracy. 

This method is the right choice for solving heat equation because it is unconditionally stable. The method can 

deal with any system involving a conservation law. 

This method is the combination of the explicit and implicit schemes. It is unconditionally stable with error   2kO  

and  2hO , because of the increased accuracy and guaranteed stability. But the formulas are slightly more 

complicated to derive. Crank-Nicolson operates on the forward difference formula for the time derivative and 

evenly weighted combination of forward difference and backward difference approximation for the remaining 

equations (Suer, 2014). 

Here the discretization of the Crank-Nicolson method comes for the variable t : 
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1,11,21,1

2

,1,2,1

h

jivjivjiv

h

jivjivjiv 



                  (24)                

Again putting 2h

kkd  and rearranging the heat equation approximation to form: 

                1,11,21,1,1,2,1,21,2  jivjivjivjivjijivjivjiv      (25a) 

Or in another form: 

               jivjivjivjivjivjiv ,1,22,11,11,221,1         (25b)      

We can see that, the left hand side of equation (4.2b) consists of unknown expressions while the right hand side 

contains known quantities.  The equation (25b) forms a tridiagonal matrix. 

To set this matrix, let  Tmjjj vvv ,...,1 . The Crank-Nicolson method of the form 

  jjjj AvccBv   11   

where 
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
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



21000

.

..

....

00021

00021

B   , 











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















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
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A  ,(26) 
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And  Tjmjj vvs ,1,0 ,...0,   

See the below grid: 

 

Figure 1.2  

Figure 1.2 mesh point for Crank-Nicolson method. The open circles are the unknowns at each time step and the 

filled circles are known representing the initial and boundary conditions.  

RESULTS 

This section has solved example of heat (explicit forward difference and implicit backward difference methods 

with an exclusion of Crank Nicolson) equations numerically only one dimension by using Finite Difference 

Method (FDM).  

Heat Diffusion equation in one Dimension 

Suppose the initial and boundary conditions for the heat equation (12) are given below: 

     xfxxu  sin0,  10  x for all 0t                                 (27a) 

  0,0 0  utu                   

 for  0x  and  5.10  t                                                   (27b) 

  0,  LutLu    for 0 tL  and  5.10  t                               (27c) 

In this illustration, we use the step sizes 137.0 hx 1.0t ,2dk and 1k . Thus, the ratio is 5.0  

the number of the grid used is n= 16 columns wide and m= 12 rows high. 

Table 1. Using the Forward-difference with  0.5 
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Figure 1a  

                         

Figure 1b Using the Forward difference method with r=0.5 

 

The formula used is in equation (17c). This FDM method is stable for  0.5 which suffices its criteria and can 

be used to form accurate approximation to the solution  txu ,  for 15.00  t and 37.10  x as given in Table 

1. The consecutive rows and columns are given in Figure (1a). A three dimensional representation of data in 

table (1) given in figure (1a) and (1b). 

In our illustration, we use the step sizes 137.0 hx ,02.0t ,2dk and 1k . Thus, the ratio is 5.0  

the number of the grid used is n= 11 columns wide and m= 16 rows high. 
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Table 2. Using the Forward-difference with  0.55 

 

Figure 2a 

 

Figure 2b 
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Here, the formula used in equation (17c) confirmed that the FDM with  0.55 is unstable, because
2

1 , 

which means the error occurred at one row will be magnified in successive rows. The difference equation has 

accuracy of order    2hOkO  . Because the term  kO reduces linearly as k  tend to zero, which means it must 

be made small to produce good approximation. 

In this illustration, we use the step sizes 1.0 hx ,004.0t ,2dk and 1k . Thus, the ratio is 5.0  the 

number of grid used is n= 16 columns wide and m= 12 rows high. 

Table 3. Using Backward difference with  0.69  

 

Using Back ward difference with  69.0  

Figure 3a 
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Figure 3b 

  

The formula used is in equation (3.7d). This FDM method is stable for  0.69 which satisfies its criteria of 

being not restricted to half (1/2) and can be used to form accurate approximation to the solution  txu ,  for 

056.00  t and 10  x as given in Table 3. The consecutive rows and columns are given in Figure (4.3). A 

three-dimensional representation of data in table (3) given in figure (3a) and (3b). 

DISCUSSION 

Strengths and Weaknesses Of The Finite Difference Methods  

This section will give a brief account on how strength and weak finite difference methods are based on analysis 

of the stability of forward difference (explicit method) and its criteria of being stable and give a proof for stability 

criteria. Also, the stability of the backward difference (implicit method) their truncation error and Crank Nicolson 

method as a remedy for short comings of the first two methods.    

Stability Analysis for Forward Difference (Explicit Method) 

The strange behaviour occurred in the previous heat simulation gave rise to a problem. The solution to partial 

differential equations by the implicit forward difference method, can take a good care of error amplification or 

magnification for practical step size. This happened to be a crucial and pivotal aspect of stable and efficient 

solution. Here, the maximum value of the ratio of our step sizes ( ) is half (1/2) as in figure (1a) and (1b) but 

for proof see equation 
2

1
2






x

t
.. When the ratio value (  ) exceeds half (1/2), the explicit forward difference is 

said to be conditionally stable. The reason is its stability depends on the choice of step sizes.  This method is 

first order accurate in time and second in space.  

The discretized form of equation (17c) is one of the contributing factors for truncation error because of the 

approximations of the derivative of (12) and also error magnification due to the method itself. Von Newman 

stability analysis measures the error amplification or magnification. Looking more closely at what the finite 

difference method is doing help us to investigate this magnification. To have a stable method, step size must be 

selected in such a way that the amplification factor should not be larger than 1(Sauer T, 2014).  

In an explicit scheme, the temperature at time n+1 depends explicitly on the temperature at time n. 

Stability Analysis for Backward Difference (Implicit Method) 

In order to improve the stability of the explicit forward difference method, we use implicit backward difference 

method (Euler method) in equation (20d). Even though the magnitude of the truncation error of the explicit in 

(17c) is similar to that of implicit of (21) with different matrix arrangement, the nature analysis of stability of 

the implicit backward difference is similar to explicit forward difference case. Although, the value of the ratio 

of our step sizes (  ) is not restricted to half (1/2) for stability which is rather bigger than that of explicit method. 
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Hence the implicit method is stable for all value of the ratio of step sizes (  ). The backward difference method 

is unconditionally stable and is first order accurate in time and second space. In term of two-dimensional heat, 

the scheme for implicit method provides second order convergence because only a very few iterations per time 

were needed.     

Since this method is stable for all step size, the errors from both the time and space discretization are of the order 

 kO  and  2hO  respectively.  This implies that, for small step hk  , the error from the time step size will 

dominate, since  2hO  will be in negligible amount compared with  kO . In other form the error can be written 

as      kOhOkO  2 . 

Crank Nicolson Method 

This method is unconditionally stable and also second order accurate in respect of both time and space. 

Previously, in the heat equation we noticed that, the explicit method is some time stable and the implicit method 

is all the times stable. When stable they both have error of order  2hkO  . The step size k  requires being fairly 

small to have good accuracy (Sauer T, 2014).   

Crank Nicolson is suitable finite difference method for the heat equation because it is unconditionally stable and 

second order convergence. Deriving this method cannot be achieved directly due to the first partial derivative 

tu  appeared in the equation (Sauer T, 2014). Although the explicit method is unconditionally stable with a serious 

draw back, the time step is very small.  

In improving accuracy of Crank Nicolson method, one may employ higher order multistep methods or implicit 

Runge-Kutta methods to improve the Crank Nicolson method in time. To improve accuracy of Crank Nicolson, 

one can use analogy with Nomerov’s method which is out of the confines of this method. 









2

2
22

h

k
hkO  

Observations 

 The error of numerical solutions increases with number of steps. 

 These errors are called Accumulative errors. 

 Step size has strong effect on the accuracy on the finite difference method. 

 Trade-off between computational effort and step size is an issue in any numerical technique such as 

FDM.  

Stability of the Finite Difference method for the heat equation Consider the following approximation to the 

1-D heat equation (Gordon D. Smith, 2004): 

 k

n

k

n

k

n

k

n

k

n uuu
x

t
uu 112

1 2 

 



                       

Where  kn

k

n txuu ,  

According notation used throughout this work is 

          jivjivjiv
x

t
jivjiv ,1,2,1,1,

2





  

Such that  jivvu k

n

k

n ,  . 
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Let 

 xink

n keu 
       

then      (4.1) 

     xinxixixin

kk eee
x

t
e 

 



 2

21                                          (28) 

  2cos2
2





 x

x

t
                                                           (29) 

According to trig identity we have that   






 


z

x
x


 2sin21cos  

Therefore  

kkk
z

x

x

t



 







 






2

21 sin4                                                    (30) 

k
z

x

x

t


















 




 2

2
sin41                                                       (31) 

Now for the sake of stability we need kkk  1   such that 

1sin41 2

2








 






z

x

x

t 
                                                        (32) 

0sin42 2

2








 






z

x

x

t 
                                                     (33) 

The right inequality suffices automatically while the left one can be written again in the form: 

0sin
4 2

2








 





z

x

x

t 
                                                          (34) 

Since   1...sin  this condition satisfies for whatever value of   provided 

2

2x
t


                                                                  (35) 

 By rearranging the above we arrived at                

2

1
2






x

t
.                                                                 (36) 

CONCLUSIONS 

This research has introduced method for solving 1-D linear second order partial differential equation for 

Parabolic Equation using finite difference method (FDM). The FDM with three types as the forward, central and 

backward differences are used to solve heat equation in 1 Dimension. The unconditionally Crank Nicolson 

method is applied solve heat problems in both the dimensions. Strengths and weaknesses (in term of stability 

and accuracy) of these methods were checked by numerical solution. 
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The implicit method is more stable than explicit and the Crank Nicolson is the in term of stability and accuracy. 

The Crank Nicolson is unconditionally stable. In FDM, the step taking for solving is convergent and accurate. 

Successive over relaxation method is applied in elliptic equation to speed up the rate of convergence. When this 

method is applied, the number of iterations reduces drastically. 

In this research, we consider numerical methods for PDEs and obtain the approximations for finite difference 

method. 
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