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ABSTRACT 

In this paper, we introduce Lr-perfect set, Rr-perfect set and Cr-perfect set in ideal topological space and 

study their properties. We investigate the relationship between the existing R*-perfect sets and Rr-perfect set 

and also L*-perfect sets and Lr-perfect set. We construct a topology τT by using Kuratowski closure 

operator. 
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INTRODUCTION 

The concept of ideal in topological space was introduced by K. Kuratowski in (1930)[?] as a nonempty 

collection I of subsets of a topological space (X, τ) that satisfy the following conditions: 

1. If A ∈ I and B ⊆ A, then B ∈ I (heredity) 

2. If A, B ∈ I, then A ∪ B ∈ I (finite additive) 

The space (X, τ, I) is called an ideal topological space. In 1933 Kuratowski [?] introduced the notion of local 

function Qₓ : P(X) → P(X) defined as A*_ₓ(I, τ) := {x ∈ X : U ∩ A ∉ I} for every open set U containing x and 

A is any subset of a topological space X. In 2013 Ahmed Al-Omari and Takashi Noiri [?] introduced the 

notion of local closure function Γ : P(X) → P(X) defined as Γ(A)(I, τ) = {x ∈ X : A ∩ Cl(U) ∉ I for every U ∈ 

τ(x), where A is any subset of a topological space X. If there is no ambiguity, we use A\ₓ and Γ(A) instead of 

A*_ₓ(I, τ) and Γ(A)(I, τ). In 2013 R. Manoharan and P. Thangavelu [?] used local function and ideal to 

introduce R\ₓ-perfect, L\ₓ-perfect and C\ₓ-perfect sets and also in 2018 Lawrence et al [?] introduced R₁-

perfect, L₁-perfect and C₁-perfect set in ideal topological space. In this paper we introduce Lᵣ-perfect, Rᵣ-

perfect and Cᵣ-perfect sets as a generalisation to R\ₓ-perfect, L\ₓ-perfect and C\ₓ-perfect sets respectively. 

PRELIMINARIES 

The following definitions, lemmas, and theorems are very important in this research. 

Definition 2.1 

If (X, τ, I) is an ideal topological space and A ⊆ X. Then the following hold: 

1. A is τₓ-closed if Aₓ ⊆ A. 

2. A is ₓ-dense-itself if A ⊆ Aₓ. 

3. A is I-dense if A = X. 
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4. A is I-open if A ⊆ (int(A))ₓ. 

5. A is regular I-closed if A = (int(A))ₓ. 

6. A is almost I-open if A ⊆ cl((int(A))ₓ). 

Definition 2.2 

If (X, τ, I) is an ideal topological space, then a topology τ is compatible with ideal I if for every A ⊆ X: if for 

every x ∈ A there exist U ∈ τ(x) such that U ∩ A ∈ I, then A ∈ I denoted by τ ∼ I. 

Lemma 2.3 

Let (X, τ) be a topological space and I₁ and I₂ be two ideals on X. If A, B ⊆ X, then the following hold: 

1. If A ⊆ B then, Aₓ ⊆ Bₓ. 

2. If I₁ ⊆ I₂ then, Aₓ(I₂) ⊆ Aₓ(I₁). 

3. Aₓ = cl(A) ⊆ cl(A) (Aₓ is closed subset of cl(A)). 

4. (Aₓ)ₓ ⊆ Aₓ. 

5. (A ∪ B)ₓ = Aₓ ∪ Bₓ. 

6. Aₓ - Bₓ = (A - B)ₓ - Bₓ ⊆ (A - B)ₓ. 

7. For every I₁ ∈ I, (A ∪ I₁)ₓ = Aₓ = (A ∪ I)ₓ. 

Theorem 2.4 Let (X, τ, I) be an ideal topological space. Then the following are equivalent: 

1. τ ∼ I 

2. If A ⊆ X has a cover of open sets whose intersection with A belong to I. 

3. If for every A ⊆ X, A ∩ A*ₓ = ∅, then A ∈ I. 

4. If for every A ⊆ X, A - A*ₓ ∈ I. 

5. If for every A ⊆ X, if A contains a nonempty subset B with B ⊆ B*ₓ, then A ∈ I. 

Theorem 2.5 Let (X, τ, I) be an ideal topological space. Then the following are equivalent: 

1. τ ∼ₓ I 

2. If A ⊆ X has a cover of sg-open sets whose intersection with A belong to I. 

3. If for every A ⊆ X, A ∩ Γ(A) = ∅, then A ∈ I. 

4. If for every A ⊆ X, A - Γ(A) ∈ I. 

5. If for every A ⊆ X, if A contains a nonempty subset B with B ⊆ Γ(B), then A ∈ I. 

Theorem 2.6 If (X, τ, I) is an ideal topological space and A, B ⊆ X, then the following hold: 

1. Γ(∅) = ∅. 
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2. Γ(A) ∪ Γ(B) = Γ(A ∪ B). 

3. If A ⊆ B, then Γ(A) ⊆ Γ(B). 

THE OPEN SETS OF ΤΓ 

In this section, we investigate τΓ finer than τ*ₓ, called the Kuratowski local closure operator, i.e. ClΓ(A) = A 

∪ Γ(A). A subset of ideal topological space (X, τ, I) is said to be τΓ-closed if Γ(A) = A. i.e., if U ∈ τΓ, then 

X − U is τΓ-closed implies Γ(X − U)(X − U) if and only if U ⊆ X − Γ(X − U). Therefore, x ∈ U implies x ∉ 

Γ(X − U) implies there exists V ∈ N(x) such that V ∩ (X − U) ∈ I. Let I = V ∩ (X − U) and we have x ∈ V − 

I ⊆ U, which is a basis for τΓ denoted by β(I₁, τ) = {V − I₁ : V ∈ τ, I₁ ∈ I}. 

Theorem 3.1 

Let (X, τ, I) be an ideal topological space, A, B ⊆ X and ClΓ(A) = Γ(A) ∪ A, then the following hold: 

1. ClΓ(∅) = ∅. 

2. A ⊆ ClΓ(A). 

3. ClΓ(A ∪ B) = ClΓ(A) ∪ ClΓ(B). 

4. ClΓ(A) = ClΓ(ClΓ(A)). 

Proof: 

(1) By theorem ?? Γ(∅) = ∅. Therefore ClΓ(∅) = Γ(∅) ∪ ∅ = ∅. Hence ClΓ(∅) = ∅. 

(2) A ⊆ A ∪ Γ(A) = ClΓ(A). 

(3) ClΓ(A ∪ B) = Γ(A ∪ B) ∪ (A ∪ B) = Γ(A) ∪ Γ(B) ∪ (A ∪ B) = ClΓ(A) ∪ ClΓ(B). 

(4) ClΓ(ClΓ(A)) = ClΓ(Γ(A) ∪ A) = Γ(Γ(A) ∪ A) ∪ (Γ(A) ∪ A) = ((Γ(A) ∪ Γ(A)) ∪ (Γ(A) ∪ A) = Γ(A) ∪ 

A = ClΓ(A). 

LΓ-perfect, RΓ-perfect, and CΓ-perfect Sets 

Definition 4.1 

Let (X, τ, I) be an ideal topological space. A subset A of the space X is said to be: 

1. LΓ-perfect if the difference A minus Γ(A) is in the ideal I. 

2. RΓ-perfect if the difference Γ(A) minus A is in the ideal I. 

3. CΓ-perfect if the set is both LΓ-perfect and RΓ-perfect. 

Lemma 4.2 

Let (X, τ, I) be an ideal topological space. Then A* is a subset of Γ(A). 

Proof: 

Let x be in A*. Then A intersected with any open set U containing x is not in I. 

Since A intersect U is a subset of A intersect Cl(U), and A intersect Cl(U) is not in I, we conclude that A 

intersect U is also not in I. 
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Example: 

Let X = {a, b, c}, 

τ (the topology) = {empty set, X, {a}, {a, b}}, 

I (the ideal) = {empty set, {a}}. 

If A = {a, b}, then 

A* = {b} and Γ(A) = {a, b}. 

Proposition 4.3 

If a subset A of an ideal topological space (X, τ, I) is CΓ-perfect, then the symmetric difference of A and 

Γ(A) is in I. 

Proof: 

Since A is both L_Gamma-perfect and R_Gamma-perfect, then  

A - Gamma(A) ∈ I and Gamma(A) - A ∈ I.  

By the finite additive property of ideals:  

(A - Gamma(A)) ∪ (Gamma(A) - A) ∈ I.  

Hence, symmetric difference Delta(Gamma(A)) ∈ I. 

Example: 

Let X = {a, b, c},  

τ = {∅, X, {b}, {a, b}},  

I = {∅, {c}}.  

If Gamma(A) = {a, b} and A = {a, b, c}, then:  

Gamma(A) - A = ∅,  

A - Gamma(A) = {c},  

So, Delta(Gamma(A)) = {c} ∈ I. 

Proposition 4.4: 

Every τ_Gamma-closed set is R_Gamma-perfect set in an ideal topological space (X, τ, I). 

Proof: 

Let A be a τ_Gamma-closed set. Then Gamma(A) ⊆ A.  

Clearly, Gamma(A) ⊆ A and A = ∅ ∈ I.  

Hence, A is an R_Gamma-perfect set. 
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Proposition 4.5: 

If A is a subset of an ideal topological space (X, τ, I) and A ∈ I, then A is a C_Gamma-perfect set. 

Proof: 

Since A ∈ I, then Gamma(A) = ∅.  

Clearly, A - Gamma(A) = A ∈ I  

and Gamma(A) - A = ∅ ∈ I.  

So, A is both L_Gamma-perfect and R_Gamma-perfect. 

Example: 

Let X = {a, b, c},  

τ = {∅, X, {a}, {a, b}},  

I = {∅, {a, b}}.  

If A = {a, b}, then Gamma(A) = ∅  

⇒ Gamma(A) - A = ∅  

and A - Gamma(A) = ∅  

⇒ (Gamma(A) - A) ∪ (A - Gamma(A)) = Delta(Gamma(A)) = ∅ ∈ I  

Therefore, A is a C_Gamma-perfect set. 

Corollary 4.6: 

If A is a subset of an ideal topological space (X, τ, I), then the following hold: 

1. If A ∈ I, then every subset of A is C_Gamma-perfect. 

2. If A is R_Gamma-perfect, then Gamma(A) - A is C_Gamma-perfect. 

3. If A is L_Gamma-perfect, then Gamma(A) - A is C_Gamma-perfect. 

4. If A is C_Gamma-perfect, then Delta(Gamma(A)) ⊆ A is C_Gamma-perfect. 

Proof: 

The proof follows from Proposition 3.4. 

1. Suppose A is R_Gamma-perfect, then Gamma(A) - A ∈ I. Thus we want to show that Gamma(A) is 

C_Gamma-perfect, which implies Gamma(A) - Gamma(Gamma(A)) = ∅ ∈ I and by proposition 3.6, 

Gamma - Gamma(Gamma(A)) = Gamma(A) - A ∈ I. Hence Gamma(A) is both R_Gamma-perfect and 

L_Gamma-perfect. Therefore, Gamma(A) - A is C_Gamma-perfect set. 

2. Suppose A is L_Gamma-perfect set, then A - Gamma(A) ∈ I. Thus, we want to show that A - 

Gamma(A) is C_Gamma-perfect. Implies Gamma(A - Gamma(A)) = A - Gamma(A) = ∅ ∈ I implies 

Gamma(Gamma(A)) - A ∈ I and also A - Gamma(Gamma(A)) = A - Gamma(A) ∈ I. Hence A - 
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Gamma(A) is both L_Gamma-perfect and R_Gamma-perfect set and so A - Gamma(A) is C_Gamma-

perfect set. 

3. Suppose A is C_Gamma-perfect set, then A - Gamma(A) ∈ I and Gamma(A) - A ∈ I. By finite 

additive property of ideal, (A - Gamma(A)) ∪ (Gamma(A) - A) ∈ I. Hence Delta(Gamma(A)) is 

C_Gamma-perfect set. 

Corollary 4.7: 

If A is a subset of an ideal topological space (X, τ, I) and A ∩ I = ∅, 

then the following hold: 

1. A - Gamma(A) is C_Gamma-perfect 

2. If A is R_Gamma-perfect then Gamma(A) - A is C_Gamma-perfect 

3. If A is L_Gamma-perfect then A - Gamma(A) is C_Gamma-perfect 

Proof: 

1. The proof follows from corollary 3.10. 

2. Suppose A ∩ Gamma(A) = ∅, then A ∈ I and Gamma(A) = ∅. 

Thus we want to show that A - Gamma(A) = A ∈ I and also  

Gamma(A) - A = ∅ ∈ I implies A is both L_Gamma-perfect and R_Gamma-perfect. 

Hence A is C_Gamma-perfect set. 

Proposition 4.8: 

If (X, τ, I) is an ideal topological space, then every I-dense-in-itself set is L_Gamma-perfect set. 

Proof: 

Suppose A is I-dense-in-itself on X, then A ⊆ A. 

Since by lemma 3.2, Gamma(A) ⊆ Gamma(A) implies A ⊆ Gamma(A) and Gamma(A) implies A = 

Gamma(A), thus A - Gamma(A) = ∅ ∈ I. 

Hence A is L_Gamma-perfect set. 

Corollary 4.9: 

If (X, τ, I) is an ideal topological space, then the following hold: 

1. Every I-dense set is L_Gamma-perfect set. 

2. Every I-open set is L_Gamma-perfect set. 

3. Every almost I-open set is L_Gamma-perfect set. 

4. Every regular I-closed set is L_Gamma-perfect set. 
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Proof: 

The proof follows from proposition 3.14. 

Proposition 4.10 

If (X, τ, I) is an ideal topological space, then ∅ and X are L_Gamma-perfect set. 

Proof: 

1. Since ∅ - Gamma(∅) = ∅ ∈ I. Hence ∅ is L_Gamma-perfect set. 

2. If I is codense, then X = X. By lemma 3.2, X ⊆ Gamma(X), clearly X = X ⊆ Gamma(X) implies X ⊆ 

Gamma(X) implies X - Gamma(X) = ∅ ∈ I. Hence X is L_Gamma-perfect set. 

Proposition 4.11:  

Let A, B be two subsets of an ideal topological space such that A ⊆ B and Gamma(A) ⊆ Gamma(B), then 

the following hold: 

1. B is R_Gamma-perfect if A is R_Gamma-perfect set. 

2. A is L_Gamma-perfect if B is L_Gamma-perfect set. 

Proof: 

1. Suppose A is R_Gamma-perfect, then Gamma(A) - A ∈ I. 

Thus, Gamma(B) - B = Gamma(A) - B ⊆ Gamma(A) - A. Hence B is R_Gamma-perfect set. 

2. Suppose B is L_Gamma-perfect, then B - Gamma(B) ∈ I. 

Thus, A - Gamma(A) = A - Gamma(B) ⊆ B - Gamma(B). 

Hence A is L_Gamma-perfect set. 

Example: 

Let X = {a, b, c}, τ = {∅, X, {a}, {a, b}} and I = {∅, {a}, {a, b}} and A = {b}, B = {a, b} 

then Gamma(A) = {∅}, Gamma(B) = {b} ⇒ Gamma(A) ⊆ Gamma(B), Gamma(A) - A = ∅ ∈ I and B - 

Gamma(B) = {a} ∈ I. 

Therefore, B is R_Gamma-perfect set if A is R_Gamma-perfect set and A is L_Gamma-perfect set if B is 

L_Gamma-perfect set. 

Corollary 4.12:  

Let A, B be two subsets of an ideal topological space such that A ⊆ B ⊆ Cl(A), then the following hold: 

1. B is R_Gamma-perfect if A is R_Gamma-perfect set. 

2. A is L_Gamma-perfect if B is L_Gamma-perfect set. 

Proof: The proof follows from proposition 3.20 
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RELATIONSHIP BETWEEN L_*–PERFECT, R_*–PERFECT AND L_GAMMA–

PERFECT, R_GAMMA–PERFECT 

In this section we investigste the relationship between the exiting LÆ-perfect, RÆ-perfect and L -perfect, R -

perfect, 

Proposition 5.1:  

Every L_*–perfect is L_Gamma–perfect but the converse is not true. 

Proof:  

Suppose A is L_*–perfect, then A - A ∈ I. 

By lemma 3.2, A ⊆ Gamma(A) implies A - Gamma(A) ⊆ A - A ∈ I. 

Hence A is L_Gamma–perfect set. 

Proposition 5.2:  

Every R_Gamma–perfect is R_*–perfect set but the converse is not true. 

Proof:  

Suppose A is R_Gamma–perfect, then Gamma(A) - A ∈ I. 

Since A ⊆ Gamma(A), clearly A - A ⊆ Gamma(A) - A ∈ I. 

Hence A is R_*–perfect set. 

Proposition 5.3:  

If A, B are R_Gamma–perfect, then A ∪ B is R_Gamma–perfect set. 

Proof:  

Since A and B are R_Gamma–perfect, then Gamma(A) - A ∈ I and Gamma(B) - B ∈ I. 

Then Gamma(A ∪ B) - (A ∪ B) ⊆ (Gamma(A) - A) ∪ (Gamma(B) - B) ∈ I. 

Hence A ∪ B is R_Gamma–perfect set. 

Proposition 5.4:  

If A and B are L_Gamma–perfect, then A ∪ B is L_Gamma–perfect set. 

Proof: Suppose A and B are L_Gamma–perfect, then A - Gamma(A) ∈ I and B – 

Gamma(B) ∈ I. 

Then (A ∪ B) - Gamma(A ∪ B) ⊆ (A - Gamma(A)) ∪ (B - Gamma(B)) ∈ I. 

Hence A ∪ B is L_Gamma–perfect set. 
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Corollary 5.5:  

In an ideal topological space, the following hold: 

1. Finite union of R_Gamma–perfect is R_Gamma–perfect. 

2. Finite union of L_Gamma–perfect is L_Gamma–perfect. 

Proposition 5.6:  

If A and B are R_Gamma–perfect, then A ∩ B is R_Gamma–perfect set. 

Proof: Suppose A and B are R_Gamma–perfect, then Gamma(A) - A ∈ I and Gamma(B) - B ∈ I. 

Then Gamma(A ∩ B) - (A ∩ B) ⊆ (Gamma(A) - A) ∪ (Gamma(B) - B) ∈ I. 

Hence A ∩ B is R_Gamma–perfect set. 

Proposition 5.7:  

If A and B are L_Gamma–perfect, then A ∩ B is L_Gamma–perfect set. 

Proof: Suppose A and B are L_Gamma–perfect, then A - Gamma(A) ∈ I and B - Gamma(B) ∈ I. 

Then (A ∩ B) - Gamma(A ∩ B) ⊆ (A - Gamma(A)) ∪ (B - Gamma(B)) ∈ I. 

Hence A ∩ B is L_Gamma–perfect set. 

Corollary 5.8:  

In an ideal topological space (X, τ, I), the following hold: 

1. Finite intersection of R_Gamma–perfect is R_Gamma–perfect. 

2. Finite intersection of L_Gamma–perfect is L_Gamma–perfect. 

Proof: The proof follows from propositions above. 
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