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ABSTRACT 

Grassland ecosystems plays a crucial role as carbon sinks, presenting opportunities for climate-smart land use 

and agriculture. Through the implementation of sustainable management practices, these ecosystems can 

enhance carbon sequestration, mitigate climate change, and bolster agricultural productivity. Nevertheless, 

challenges such as land degradation, overgrazing, and climate variability must be addressed to fully realize the 

potential of grasslands as carbon sinks. This review elucidates the role of grassland ecosystems in the global 

carbon cycle, emphasizing their capacity to sequester carbon and mitigate climate change. It explores strategies 

such as agro-silvo pastoralism, which integrates trees, livestock, and crops, and integrated crop-livestock 

systems, which optimize resource use and carbon storage. The review aims to provide insights into sustainable 

land use practices for climate change mitigation and ecosystem health. Despite ongoing research, uncertainties 

persist regarding the impact of land use patterns on climate change. This review underscores the importance of 

effective grassland management and land-use patterns that prioritize carbon sinks in mitigating climate change. 

These systems offer a threefold climate benefit: enhanced carbon sequestration, increased soil organic carbon 

storage, and reduced anthropogenic CO₂ emissions. The study emphasizes the necessity of integrating land 

change science into global environmental research and sustainability initiatives, and highlights the significance 

of vegetative cover restoration, sustainable ecosystem management, and modified land-use patterns in 

promoting healthier soil carbon stocks and mitigating climate change impacts. By adopting sustainable land 

use practices, we can enhance biomass yields, increase carbon inputs, and promote environmental resilience, 

ultimately contributing to climate change mitigation efforts. 

Keywords: Grasslands; Agro-Silvo Pastoralism; Crop Livestock Integration; C Sequestration; GHG, Climate 

Change. 

INTRODUCTION 

Grasslands cover a significant portion of the world's land, approximately 26%, and a substantial 70% of its 

agricultural land. These ecosystems play a vital role in carbon sequestration, storing around 20% of global soil 

carbon (Conant, 2010). To combat global warming, it is crucial to promote sustainable grassland management 
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and land use practices that enhance carbon sinks, thereby reducing atmospheric CO2 levels and contributing to 

carbon neutrality targets. Land use patterns associated with grasslands and animal agriculture can significantly 

influence greenhouse gas emissions and carbon accumulation (Gaitán et al., 2016). The effects of animal 

agriculture on grasslands are multifaceted, impacting local biodiversity, soil composition, nutrient cycles, 

regional albedo, and hydrology, as well as global greenhouse gas and aerosol levels (Lee et al., 2020). 

Implementing sustainable grassland management techniques, such as optimized grazing, pasture enhancement, 

and restoration of degraded pastures, is essential for boosting soil carbon sequestration and preventing further 

warming from managed grasslands (Weindl et al., 2017). Soil organic carbon (SOC) is a critical component of 

soil quality and ecosystem services, and its sequestration is increasingly recognized as a potential solution to 

offset greenhouse gas emissions and climate change effects (Zomer et al., 2017). The rapid depletion of 

grassland soil carbon due to improper land use necessitates sustainable restoration efforts to increase soil 

storage capacity (Liu et al., 2023). By adopting sustainable land use practices and promoting effective 

grassland management, we can enhance soil carbon sequestration, mitigate climate change impacts, and 

maintain ecosystem service. 

Land use and changes are shaped by the complex interplay between human activities and natural systems. The 

relationship between land cover and greenhouse gas concentrations, as well as the contribution of land use to 

climate change, has been well-documented (Boddey et al., 2020; Conant et al., 2017; Damian et al., 2021; 

Gerber et al., 2013; Luo et al., 2017; Powlson et al., 2013; Pretty et al., 2018). Agricultural land use, in 

particular, has a substantial impact on greenhouse gas emissions, and it has been suggested that land-use 

systems can play a crucial role in mitigating climate change (O'Mara, 2012). Various land use types are 

essential for atmospheric carbon sequestration, helping to stabilize carbon in both solid and aqueous forms, 

and thereby contributing to global warming mitigation (Herrero et al., 2016; Smith et al., 2008). The 

significance of land-use changes in climate policy cannot be overstated, as highlighted by Searchinger et al. 

(2018) and Edenhofer et al. (2014), who note the considerable loss of native vegetation and soil carbon storage 

resulting from land-use changes. The complex relationships between land use, climate change, and carbon 

sequestration underscore the need for sustainable land use practices that prioritize carbon sinks and mitigate 

greenhouse gas emissions. By adopting effective land use strategies, we can reduce the environmental impacts 

of land use and promote a more sustainable future. 

Land use practices, such as agroforestry technologies, including agro-silvo pastoralism, are essential for 

reducing greenhouse gas emissions and enabling animal agriculture to adapt to climate change (Verchot et al., 

2007). Silvopastoral systems, which integrate trees and shrubs with forage grasses, have been shown to 

improve animal nutrition, enhance soil health, and promote carbon sequestration (Murgueitio et al., 2011). By 

adopting agroforestry methods, carbon storage in animal agriculture lands can be increased, potentially 

offsetting greenhouse gas emissions and enhancing ecosystem services through the transformation of land into 

tree-based systems, such as agro-silvo pastoralism. Research has demonstrated the effectiveness of sustainable 

land management practices in promoting carbon sequestration, with studies showing significant carbon 

sequestration rates in various land use types (Terefe et al., 2020). The implementation of sustainable land use 

practices, such as agroforestry and silvopastoral systems, can have numerous benefits, including improved 

animal nutrition, enhanced soil health, and increased carbon sequestration. By adopting these practices, we can 

promote ecosystem services, mitigate climate change, and support sustainable agriculture. 

Research suggests that agricultural methods, such as crop-livestock or crop-livestock-forestry systems, can 

significantly impact soil carbon stocks (Oldfeld et al., 2022). Integrated crop-livestock systems (ICLSs) have 

been shown to produce fewer greenhouse gas emissions, with a reduction of 24-37% compared to grazing 

systems (Brewer and Gaudin, 2020). These integrated approaches have demonstrated improved productivity, 

sustainability, and resilience to climate change compared to specialized agricultural methods. Reintroducing 

ICLSs into cropland has been proposed as a strategy to decrease the greenhouse gas footprint of animal 

agriculture (Thornton and Herrero, 2015). However, the impact of ICLSs on greenhouse gas fluxes is 

inconsistent due to the complex nature of emission reduction strategies, and the specific methods involved are 

not always clear (Sanderson et al., 2013). Further research is needed to understand the mechanisms underlying 

the benefits of ICLSs and to develop effective strategies for reducing greenhouse gas emissions. 

Soil carbon sequestration is a vital strategy for mitigating climate change by reducing greenhouse gas levels  
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and offsetting emissions. The preservation and accumulation of carbon in soil are significantly influenced by 

climate, as highlighted by the Intergovernmental Panel on Climate Change (IPCC, 2007) and various studies 

(Fidalgo et al., 2007; Conant et al., 2001). Climate change impacts grassland soil organic carbon storage by 

altering plant carbon input processes and microbial metabolism, as recently underscored by Bai and Cotrufo 

(2022). Several strategies have been proposed to enhance soil carbon sequestration rates, including 

reforestation, afforestation, and conservation practices (Post and Kwon, 2000). Grassland carbon sequestration 

and sustainable land use patterns can increase soil carbon storage, reduce CO2 emissions, and protect global 

environmental security, thereby mitigating the impact of climate change on animal agriculture (Brock et al., 

2023; Ruehr et al., 2023). However, animal agriculture and its associated land use management face the 

challenge of balancing food demand with minimizing carbon release into the atmosphere and sustaining 

environmental sustainability. Despite the potential of grasslands and animal agriculture land use patterns to 

contribute to climate change mitigation, knowledge gaps remain. These include quantifying water productivity 

and improving efficiency in mixed crop systems (Descheemaeker et al., 2010). Moreover, implementing 

measures to enhance carbon sequestration in forage and grazing and reduce greenhouse gas emissions requires 

consideration of institutions, policies, and gender roles in animal agriculture-related land use systems.  

This review aims to examine the potential of grasslands and animal agriculture land use patterns to reduce 

greenhouse gas emissions and increase carbon accumulation. Specifically, the study will review existing 

literature on grassland ecosystems as carbon sinks, identify their potential for mitigating climate change, 

discuss strategies for managing and restoring these ecosystems, and explore their implications for climate-

smart land use and agriculture. By addressing gaps in understanding the complex relationships between 

grassland ecosystems, carbon sequestration, and climate change, this study aims to contribute to the 

development of effective strategies for managing grassland ecosystems as carbon sinks and promoting 

sustainable land use practices. 

METHODOLOGY  

Literature Search Methodology 

A comprehensive literature search was conducted using PubMed, Scopus, and Web of Science databases to 

identify relevant articles published between 2000 and 2023. The search focused on subjects related to 

agriculture and environment, and articles were sorted based on their relevance to the study. 

Search Strategy and Inclusion Criteria 

Peer-reviewed articles were identified using specific keywords, including "carbon sequestration," "climate 

change mitigation," "grasslands," "agro-silvo pastoralism," "integrated crop livestock systems," "land use 

patterns," and "sustainable development." The search approach was semi-systematic and integrative, 

progressing from broad to specific concepts (Snyder, 2019). 

Thematic Analysis and Study Selection 

The thematic analysis revealed five key themes: 

i. Carbon Cycle Dynamics: A key factor in global warming phenomena. 

ii. Synergies between Microbial and Plant Diversity: Soil factors in carbon sequestration and cycling. 

iii. Grassland-based Livestock Production: Trends and implications for mitigating anthropogenic CO2 

emissions. 

Study Screening and Data Extraction 

Two reviewers independently screened titles, abstracts, and full texts. Data extraction was performed using a 

standardized form, and study quality was assessed using the Cochrane risk of bias tool. 
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Conceptual Framework for Examining Grasslands and Climate-Smart Land Use and Agriculture 

The conceptual framework explores the capacity of grasslands and climate-smart land use and agriculture to 

sequester carbon and mitigate greenhouse gas (GHG) emissions. This framework considers the complex 

relationships between grassland ecosystems, land use practices, and climate change, with a focus on 

identifying effective strategies for promoting carbon sequestration and reducing GHG emissions. The 

framework consists of key components, including grassland ecosystems, climate-smart land use and 

agriculture, carbon sequestration, and GHG emissions mitigation. Grassland ecosystems cover a significant 

portion of Earth's surface, while climate-smart land use promotes sustainable agriculture and ecosystem 

services. Carbon sequestration captures and stores atmospheric carbon dioxide, while GHG emissions 

mitigation aims to reduce greenhouse gas emissions. 

The conceptual framework for analyzing grasslands and Integrated Farming Systems (IFS) in their role in 

carbon sequestration and greenhouse gas (GHG) emissions mitigation is structured into three components: 

input factors, process factors, and output factors (Table 1). A feedback loop connects the input and output 

components. From the input perspective, various land use and management practices influence carbon 

sequestration and GHG emissions mitigation. These practices encompass afforestation, sustainable forest 

management, agroforestry, perennial crop production, urban forestry, conservation tillage, no-till farming, 

cover cropping, crop rotation and intercropping, organic amendments, integrated pest management, grazing 

management, and soil conservation techniques. Soil type and quality are critical input factors affecting carbon 

sequestration. Clay soils exhibit higher carbon retention due to increased surface area and reactivity, whereas 

sandy soils demonstrate lower retention due to reduced surface area and increased leaching. Loamy soils offer 

a balance between carbon retention and water infiltration, while peat soils possess high carbon storage capacity 

due to waterlogged conditions.  

Table 1 illustrates that aggregated, diverse microbial communities and well-structured soils contribute to 

carbon sequestration by reducing erosion, enhancing water infiltration, and promoting carbon sequestration. 

Severe weather conditions can hinder carbon sequestration by causing soil disruption and plant destruction 

(Oktan et al 2022). Carbon sequestration and photosynthesis are most effective at temperatures ranging from 

10 to 25°C (Nayak et al 2022). Plant growth and carbon sequestration are optimal with annual precipitation 

between 500 and 1,500 mm.  

Grazing exerts both positive and negative effects on carbon sequestration. Positive effects include increased 

soil organic carbon accumulation, above-ground biomass carbon storage, root growth, and improved soil 

structure (Han et al 2023). Negative effects encompass methane emissions, nitrogen oxide emissions, soil 

disturbance, and erosion. Optimal grazing practices involve rotational grazing, low-to-moderate stocking rates, 

mixed grazing, and the incorporation of legumes and forbs (Rouquette, et al 2023). 

Optimal tillage practices, including no-till or reduced-till farming, conservation tillage, mulch tillage, and 

cover cropping, can enhance soil health (Thapa and Dura, 2024), and reduce greenhouse gas emissions 

(Alasinrin et al. 2024). Tillage negatively impacts carbon sequestration by causing soil disturbance, erosion, 

and oxidation of soil organic carbon (SOC), while positively affecting it by reducing methane emissions and 

increasing nitrogen availability for crops. 

Integrated Livestock-Crop Systems can maximize the efficiency of nutrient cycling by utilizing manure and 

crop residues, reducing the need for artificial fertilizers (Sekaran et al 2021). This approach can enhance soil 

organic carbon (SOC) through the combination of grazing and crop cultivation, while also improving 

ecosystem services by creating more diverse landscapes. 

Agroforestry systems, which combine trees and crops, can improve carbon sequestration, soil health, and 

biodiversity (Fahad et al 2022; Matos et al 2022). These systems reduce soil disturbance and erosion, while 

enhancing ecosystem services by storing biomass above-ground, promoting tree roots and litter. By integrating 

trees into agricultural landscapes, agroforestry systems can also promote more diverse and resilient ecosystems 

(Reppin et al 2020).  

Climate change can impact grassland productivity and carbon sequestration, influencing farming practices  
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through policy and economic incentives (Akpensuen, et al 2025; Abrar et al 2025). Additionally, climate 

change can impact soil health and fertility, which can in turn affect greenhouse gas emissions reduction 

(Kumar et al 2022).  

 

Figure 1 Conceptual Framework for Examining Grasslands and Climate-Smart Land Use and Agriculture in 

GHG Emission Dynamics. 

The framework highlights the interconnections between grassland ecosystems, climate-smart land use and 

agriculture, carbon sequestration, and GHG emissions mitigation. It includes land use practices like grazing, 

agriculture, and conservation, ecosystem services like food, fiber, and climate regulation, and climate change 

impacts like temperature, precipitation, and weather patterns. These interconnections are crucial for sustainable 

land use and agriculture. The framework can be utilized in various contexts, such as sustainable land use 

planning, climate change mitigation, and ecosystem-based adaptation, to promote sustainable land use and 

agriculture, reduce GHG emissions, and promote carbon sequestration, while also addressing the impacts of 

climate change. 

Carbon Cycle Dynamics: A Key Factor in Global Warming Phenomena 

Carbon dioxide (CO2) is a potent greenhouse gas that plays a crucial role in regulating the Earth's temperature. 

By trapping heat from the Earth's surface, CO2 prevents the planet from becoming approximately 32.0°C 

colder (Mehmood et al., 2020). However, human activities have significantly increased CO2 concentrations in 

the atmosphere, leading to severe consequences for the Earth's natural environment. Agriculture, forestry, and 

other land use (AFOLU) are significant contributors to CO2 emissions, accounting for 23% of human-induced 

CO2, CH4, and N2O emissions between 2007 and 2016 (Jia et al., 2019). Human activities like transportation, 

industrial processes, and residential energy use contribute to the release of CO2 into the atmosphere. These 

activities release large amounts of CO2, disrupting the natural carbon cycle and causing global warming. 
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Rising CO2 levels lead to climate change, altering temperature and precipitation patterns, altering ecosystems, 

and impacting biodiversity. The natural carbon cycle is disrupted, leading to changes in carbon storage and 

release. Current CO2 emissions from human activities amount to approximately seven billion tons each year, 

contributing to the increasing concentrations and climate change impacts. Therefore, it is crucial to address 

these issues to mitigate the negative effects of climate change. 

The carbon cycle is a complex process that involves the exchange of carbon between atmospheric, oceanic, 

and terrestrial reservoirs, and is intricately linked to the Earth's climate (Ciais et al., 2013). The global carbon 

cycle comprises three key components: atmospheric carbon, oceanic carbon, and terrestrial biosphere. 

Atmospheric carbon, influenced by human activities like fossil fuel burning and land-use changes, represents 

the amount of carbon dioxide in the atmosphere. Oceanic carbon, absorbed by the oceans, is influenced by 

ocean chemistry and circulation patterns. Terrestrial biosphere, stored in plants, soils, and other organic matter, 

is influenced by land-use changes, climate, and plant physiology. Natural processes, such as afforestation, play 

a crucial role in maintaining stable surface air temperatures and atmospheric CO2 levels by balancing carbon 

emissions and absorption (Li et al., 2022). Natural carbon sinks, including forests, oceans, and soils, are 

critical in mitigating climate change by absorbing more than half of human-generated CO2 emissions (Royal 

Society, 2018). These sinks help to regulate the Earth's climate by reducing the amount of CO2 in the 

atmosphere, which in turn helps to slow down global warming. However, the unprecedented scale of human 

carbon production is disrupting the carbon cycle, potentially leading to severe climatic impacts.  

Human activities, such as burning fossil fuels, deforestation, and land-use changes, are releasing large amounts 

of CO2 into the atmosphere, which is altering the natural balance of the carbon cycle. The global carbon cycle 

is closely tied to the greenhouse effect and involves the continuous movement of carbon among various 

sources. The carbon cycle is a dynamic process that is constantly evolving, with new information being 

documented regularly (IPCC, 2018). This provides extensive references for students and researchers studying 

the carbon cycle and its connection to climate change. Understanding the carbon cycle and its connection to 

climate change is critical for developing effective strategies to mitigate and adapt to the impacts of climate 

change. By reducing greenhouse gas emissions and promoting carbon sequestration, we can help to stabilize 

the Earth's climate and reduce the risks associated with climate change. 

Scientists have made significant progress in quantifying human-induced CO2 emissions and oceanic carbon 

content. Research has improved our understanding of the increase in atmospheric CO2 since 1750, particularly 

in relation to land-use changes and the terrestrial biosphere's response to climate shifts (IPCC, 2007). Global 

advancements have also been made in identifying key CO2 flows, enabling more accurate assessments of 

carbon exchange (IPCC, 2013, 2014). The concept of "carbon-climate feedbacks" refers to the indirect effects 

that influence carbon exchange through ecosystem responses to climate change (Kaushik et al., 2020). Climate 

factors, such as temperature and precipitation patterns, modify the metabolism and productivity of land-based 

ecosystems, affecting their involvement in CO2 exchange with the atmosphere (Andrew et al., 2018).  

Researchers have gained a better understanding of the impact of land-use changes on atmospheric CO2 levels 

since 1750, as well as the terrestrial biosphere's response to a changing climate (Jia et al., 2019). Globally, 

advancements in technology have improved the identification of major CO2 flows, enabling more accurate 

assessments of carbon exchange and its relationship to climate change (Harris et al., 2022). These advances in 

understanding the carbon cycle and its relationship to climate change have significant implications for climate 

change research and policy. By improving our understanding of the complex interactions between the carbon 

cycle, climate change, and ecosystems, we can develop more effective strategies for mitigating and adapting to 

the impacts of climate change. 

Biodiversity plays a significant role in the global carbon cycle and climate by influencing processes at the 

interface between the biosphere and atmosphere. Many Earth system models now incorporate a dynamic 

vegetation component, focusing on climate, plant physiology, and the efficiency of carbon assimilation 

(Buscardo et al., 2021). The global carbon cycle has been studied extensively, with notable representations 

provided by Bolin et al. (1979) and Wigley and Schimel's edited work in 2000. Post et al. (1990) presented a 

mathematical inventory of global carbon reservoirs and fluxes, while Hansen et al. (2007) summarized current 

knowledge regarding active carbon reservoirs on Earth. The global carbon cycle involves the exchange of 
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carbon stocks in the atmosphere, ocean, and terrestrial biosphere, which is affected by various biological and 

geochemical processes (Rackey, 2023). This cycle is critical for understanding the impacts of rising 

atmospheric CO2 levels, climate change, and the eventual removal of CO2 through extensive implementation 

of negative emission technologies.  

Stabilizing CO2 levels in the atmosphere is crucial for addressing climate change, and this can only be 

achieved through significant reductions in global CO2 emissions (Le Quéré et al., 2009). Moreover, the 

unpredictable effects of changes in CO2 sinks on future atmospheric CO2 concentrations highlight the 

importance of reducing uncertainties. Artificial methods for CO2 extraction include reforestation, mangrove 

restoration, kelp farming, sustainable agricultural practices, and cutting-edge technologies. These methods 

effectively absorb CO2 from the air through photosynthesis, promote carbon sequestration, and utilize 

sustainable agricultural practices. They also involve the development and deployment of advanced 

technologies to capture and utilize CO2.  

Human activities have dramatically increased atmospheric levels of CO2 and other greenhouse gases. For a 

period spanning 20 million years, CO2 concentrations remained below 280 parts per million (ppm). However, 

human activities such as burning fossil fuels, deforestation, and land-use changes have led to a significant 

increase in atmospheric CO2 levels, contributing to climate change. Reducing CO2 emissions and promoting 

carbon sequestration are critical for mitigating climate change. By implementing artificial methods for CO2 

extraction and reducing greenhouse gas emissions, we can help to stabilize the Earth's climate and reduce the 

risks associated with climate change. 

The global carbon cycle is experiencing substantial alterations due to anthropogenic activities, with the 

escalation of carbon dioxide and methane emissions contributing to climate change (Guariguata, 2009). The 

equilibrium among the surface ocean, terrestrial biosphere, and atmosphere is being disrupted by the utilization 

of fossil fuels, human-induced land disturbances such as deforestation and urbanization, and indirect effects of 

climate warming, which impact permafrost, soils, and oceans, thereby altering carbon storage and release. 

Natural ecosystems, both terrestrial and marine, function as buffers, absorbing and storing nearly half of all 

CO2 emissions (Regnier et al., 2022). The research underscores the importance of comprehending the impact 

of extreme climate events on the terrestrial biosphere, noting that droughts and heatwaves can diminish 

regional ecosystem carbon reserves and modify terrestrial carbon uptake.  

Despite the increase in anthropogenic greenhouse gas emissions, the natural carbon cycle has not kept pace, 

which has mitigated climate change and limited global temperature increases (Abellan et al., 2017). This 

underscores the necessity of understanding the intricate interactions between the carbon cycle, climate change, 

and ecosystems. Comprehending the impact of human activities on the global carbon cycle is crucial for 

devising effective strategies to mitigate climate change. By reducing greenhouse gas emissions and promoting 

carbon sequestration, we can contribute to stabilizing the Earth's climate and mitigating the risks associated 

with climate change. 

Synergies between Microbial and Plant Diversity and Soil Factors in Carbon Sequestration and Cycling 

Soil Microbial Communities: Key Players in the Carbon Cycle 

Soil microbes play a vital role in carbon cycling within soil ecosystems by breaking down and transforming 

organic matter through various metabolic pathways, ultimately affecting soil carbon storage and turnover (Wu 

et al., 2024). This process is further facilitated by microbial carbon pumps, which enable carbon turnover in 

plants, soil, and microorganisms. Despite their importance, the ability of soil microbes to withstand and adapt 

to climate change remains poorly understood, even as the impacts of land use on soil ecosystems are well-

documented (de Vries et al., 2012). The study of environmental microorganisms has led to the development of 

numerous biologically based agricultural methods and products (Kremer, 2017). Microorganisms are 

incredibly diverse, with a wide range of metabolisms and habitats, including soil, water, and even human 

beings (Onen et al., 2020). They are essential for maintaining Earth's biogeochemical cycles, yet the intricacies 

of their relationships with ecosystem processes remain understudied, despite the growing exploration of 

complex environmental microbial communities (Graham et al., 2016). Further research is needed to understand 
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the role of soil microbes in carbon cycling and ecosystem processes. This includes investigating climate 

change's effects on soil microbial communities, developing sustainable agricultural practices that utilize 

beneficial microorganisms, and exploring the intricate connections between microorganisms and ecosystem 

processes. This knowledge can lead to more effective strategies for mitigating climate change and promoting 

sustainable ecosystem management. 

Soil microorganisms are crucial for biodiversity and ecological processes such as carbon and nutrient cycling 

(Delgado-Baquerizo et al 2018). Microbial biomass carbon, a measure of soil organic carbon (SOC), increases 

in plant mixtures, but its proportion of SOC is lower and is consistent across forest, grassland, and cropland 

systems and is independent of climate (Chen et al 2019). Liang et al. (2017) explained soil carbon dynamics 

through two pathways, ex vivo modification and in vivo turnover, which are influenced by microbial growth 

and activity. These pathways, driven by microbial catabolism or anabolism, contribute to the magnitude of the 

organic carbon reservoir in soils. Thakur et al. (2015) reported that plant diversity increased soil microbial 

biomass in various terrestrial ecosystems, extending previous findings from twelve grassland studies. Because 

diversity in plants increases the availability of carbon to belowground plant matter and encourages microbial 

mass contributions, it enhances soil organic carbon retention. 

The natural carbon cycle involves the degradation of soil organic carbon (SOC) by microbes and chemical 

reactions, releasing CO2 into the atmosphere. However, the decline in soil organic carbon leads to a significant 

release of CO2, causing severe impacts on humans, plants, and wildlife. Wu et al. (2024) confirmed that the 

structure, activity, and assembly mechanisms of soil microorganisms are crucial to the soil carbon cycle. 

Microbial energetics play a crucial role in the biogeochemical cycle of carbon and nitrogen, affecting the 

bioavailability of phosphorus in the mycorrhizosphere (Varma and Buscot, 2005). However, understanding the 

interactions between environmental variables and microbial community structure is essential for accurately 

predicting their role in ecosystem carbon and nitrogen cycling (Junkins et al. 2022). Microbial ecology aims to 

understand inter- and intraspecies interactions in microbial communities, but challenges arise due to the 

complexity, dynamic nature, and unique interactions within a community (Kodera et al 2022). Graham et al. 

(2016) suggested that a deeper understanding of microbial communities, based on ecological principles, could 

improve our capacity to predict ecosystem processes compared to environmental variables and microbial 

physiology. The combination of these factors can provide a comprehensive explanation for the rates of carbon 

and nitrogen cycling processes. Recent studies suggest that microbial biomass can enhance ecosystem carbon 

cycling models, suggesting that understanding microbial community structure can also improve our 

understanding (Schimel and Weintraub, 2003). 

Microbial-derived compounds make up a significant portion of stable SOC (Kallenbach et al., 2016). However, 

questions remain about interactions, microbial community structure, physiology, and impacts on carbon 

conversion into microbial biomass versus soil carbon release. The soil microbial carbon pump (MCP) concept 

highlights the active role of soil microbes in storing soil organic carbon (SOC) through continuous microbial 

transformation from labile to persistent anabolic forms but has not been evaluated with data (Zhu et al 2020). 

This study highlights the significance of microbial substrate efficiency, C and N allocation in regulating plant-

derived C and N incorporation into soil organic matter (SOM), and soil matrix interactions in SOM 

stabilization. Soil microorganisms have a substantial influence on soil organic carbon (SOC) reserves because 

they not only release carbon dioxide into the atmosphere through decomposition but also take up carbon, grow 

their bodies, and finally die. (Cotrufo, et al 2013; Liang, et al 2019; Liang, et al 2017; Schimel and Schaeffer, 

2012). Microbial residues can be "pumped" into organic matter structures that can persist in soils for decades 

or even millennia. These processes of continual carbon turnover include absorption, biomass building, cell 

death, and metabolic products. 

The Intersection of Soil Organic Carbon and the Carbon Cycle 

Soil plays a critical role in the global carbon cycle, serving as the second-largest carbon store on Earth with 

approximately 2000 Pg C in soil organic carbon (SOC) (Janzen, 2004). The production and degradation 

processes of these enormous carbon pools significantly impact CO2 sequestration and release, influencing 

short-term climate control and climate change mitigation (Davidson and Janssens, 2006; Lal, 2008). Soil 

carbon is a crucial component of ecosystem capacity and the global carbon cycle, contributing to 
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biogeochemistry and climate change mitigation. Stable soil aggregates play a vital role in promoting and 

stabilizing soil organic carbon (Wu et al., 2024). However, human activities, such as fires, have significantly 

reduced soil organic carbon, leading to soil oxidation and loss. Soils serve as a vital carbon sink, buffering 

against the growth of atmospheric CO2, with 58% of soil composition being organic carbon (Trivedi et al., 

2018). In addition to food production, soils provide essential ecological services, including: biodiversity 

conservation, water purification, climate regulation and human legacy. To prevent environmental degradation 

and ensure food security in a changing climate, sustainable agriculture techniques focus on managing soil 

organic carbon. Adopting practices like effective soil carbon management can mitigate climate change, 

promote ecosystem health, and ensure long-term food security, while also maintaining ecosystem balance and 

addressing climate change challenges. 

The total soil carbon stock consists of both soil organic carbon (SOC) and soil inorganic carbon (SIC) 

components (Lorenz and Lal, 2018). SIC and SOC interact, with carbon sequestered in the SOC stock through 

vegetation fixation, deposition, and charred biomass. Net primary production (NPP) is the main C input, as a 

significant fraction of CO2 fixed during photosynthesis is respired. Cropland, temperate grassland/shrubland, 

and tropical grassland/savannah may store up to 716 Pg of SOC at a soil depth of 1 m. Furthermore, the soil 

carbon stock is influenced primarily by climate, geology, and land management techniques, as these factors 

influence soil and plant type. Soil processes are crucial for plant growth and productivity, but their 

representation in Earth system models is often unsupported by empirical evidence (Buscardo et al 2021). 

Understanding belowground community diversity, function, and biotic interactions is essential, as is 

understanding the impacts of belowground life on aboveground community dynamics and biosphere-

atmosphere feedbacks. 

Soil respiration, a significant global carbon cycle flux, is often assumed to equalize CO2 efflux, but this study 

challenges this assumption by integrating CO2 and O2 measurements (Angert et al 2015). Soil respiration 

comprises heterotrophic respiration by microorganisms such as bacteria and fungi and autotrophic respiration 

by living roots, estimated by measuring CO2 flux or based on soil profile gradients (Davidson et al., 2002; 

Davidson and Trumbore, 1995). The concentration of soil organo-mineral particles decreases with increasing 

density across diverse soils due to a decrease in the organic to mineral phase mass ratio and variations in the 

mineral phase density, affecting soil texture, mineralogy, location, and management (Sollins et al. 1994). This 

implies that soils play a critical role in carbon sequestration; hence, understanding the impact of underground 

life on aboveground community dynamics can enhance carbon storage in land use management. Soils stabilize 

carbon through various processes, including physical protection against decomposers, organomineral 

complexes, and biochemically recalcitrant BC (Lorenz and Lal, 2018). Because of its relatively high 

hydrophobicity, organic matter (OM) either reduces its biodegradability or increases its aggregate stability, 

stabilizing soil organic carbon (Bachmann et al 2008). Soil aggregation and complex formation are crucial in 

agroecosystems, with climate, physicochemical characteristics, and vegetation management influencing input 

and loss. 

Plant Diversity's Impact on Carbon Storage and Flux 

Plant diversity plays a crucial role in shaping grassland ecosystems, with significant impacts on productivity 

and soil carbon stocks. Research has shown that plant diversity has a positive effect on natural grasslands and 

grassland biodiversity, leading to enhanced ecosystem functioning and carbon sequestration (Bai and Cotrufo, 

2023). The effects of plant diversity on soil carbon accumulation become more pronounced over time, 

mirroring the effects on biomass productivity. The increase in belowground carbon inputs, enhanced 

microbiological development and turnover, and greater entombment of necrotic material are contributing 

factors.  

To promote soil organic carbon (SOC) storage and persistence in grasslands, continuous high levels of 

diversification and root carbon inputs are necessary (Chen et al., 2018; Lange et al., 2015). This is critical for 

maintaining ecosystem health and mitigating climate change.  Despite the importance of plant diversity, global 

plant diversity loss is occurring at an alarming rate. Plant diversity is crucial for improving litter inputs and 

reducing microbial respiration, which significantly impacts the storage and persistence of SOCs. The impact of 

plant diversity on SOC remains a critical area of research, with important implications for ecosystem  
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management and climate change mitigation (Chen et al., 2023). 

Functional diversity enhances biomass accumulation and productivity, positively impacting carbon storage 

(Hisano and Chen's 2020). Therefore, understanding the impact of plant diversity on net biomass change under 

different abiotic settings is crucial for understanding human environmental change and soil organic carbon 

dynamics (Chapin et al 2000). The reduction in plant diversity raises concerns about the potential negative 

impact on terrestrial ecosystem ecological services (Naeem et al. 2000; Loreau et al. 2001; Hooper et al. 2005). 

This could make it more difficult for long-lived carbon pools to function as carbon sinks, potentially reducing 

the ability of terrestrial ecosystems to absorb CO2 from the atmosphere. This topic has been extensively 

discussed and researched, with numerous studies indicating potential negative effects on ecosystems (Fan et al. 

1998; Pacala et al. 2001). 

Grassland-based livestock production and animal product consumption trends and implications for 

mitigating anthropogenic CO2 emissions 

Grasslands, comprising 20-40% of the world's land area, account for 80% of agricultural land and play a 

crucial role in the global food system (Steinfeld et al., 2006). Despite 20% of natural grasslands being farmed, 

grasslands contribute 27% and 23% of milk and meat production, respectively, supporting one billion of the 

world's poorest people and accounting for one-third of worldwide protein intake (FAO 2006). Livestock 

systems are vital for poverty alleviation, food security, and agricultural growth and contribute to reducing 

global warming emissions (World Bank 2021; Shrestha et al. 2020). However, animal agriculture can 

potentially contribute to addressing global warming by reducing the associated greenhouse gas emissions 

(Grossi et al. 2018). 

Despite 20% of natural grasslands being farmed, grasslands contribute 27% and 23% of milk and meat 

production, respectively, supporting one billion of the world's poorest people and accounting for one-third of 

worldwide protein intake (FAO 2006). Livestock systems are vital for poverty alleviation, food security, and 

agricultural growth and contribute to reducing global warming emissions (World Bank 2021; Shrestha et al. 

2020). However, animal agriculture can potentially contribute to addressing global warming by reducing the 

associated greenhouse gas emissions (Grossi et al. 2018). 

Livestock products are crucial for global food security, providing 33% of the world's protein and 17% of its 

calories (Rosegrant et al., 2009). Livestock output is predicted to increase in emerging nations, with 2.6 and 

2.7 billion cattle, buffaloes, and small ruminants by 2050, respectively (FAO, 2006). The livestock industry 

employs 1.1 billion people and supports one billion of the world's poorest people (Hurst et al 2005). Livestock 

are essential for agriculture, providing more than 13% of the world's calories and 28% of its protein needs. The 

global demand for milk, beef, and eggs is expected to increase by 30%, 60%, and 80%, respectively, by 2050, 

posing a dilemma: more livestock or intensified production (Melkan 2019). The "livestock revolution" is 

accelerating in developing nations, with global meat production predicted to double and milk production 

predicted to rise (Thornton, 2010; Wright et al., 2012). However, climate change, land and water competition, 

and food security challenges may negatively impact livestock production (Thornton, 2010). 

The increasing human population demand for livestock-related goods can be addressed through climate-smart 

livestock systems, which minimize CH4 intensity and sustain livestock output (Grossi et al., 2019). Population 

growth, urbanization, and increasing income levels are expected to increase the demand for animal-related 

goods, potentially overworking grazing systems (Mahtta et al. 2022). The growing global population, projected 

to surpass 10 billion by 2050, is causing a surge in the demand for protein-rich dietary sources (FAO 2009; van 

Dijk et al. 2021. Climate change exacerbates the demand for protein-rich food, as the growing population's 

desire magnifies the negative consequences of climate change and variability (Henchion et al. 2017; Pimentel 

et al. 2004). The demand for animal products is expected to quadruple by 2050 due to urbanization, population 

growth, and rising wages (Sejian et al. 2016). The reduction of food-linked emissions can be achieved by 

minimizing the intensity of livestock production emissions and from the land use forms associated with 

livestock production (Montes et al 2013; Hristove et al 2013). 

Climate change is putting pressure on global agriculture, which is expected to contribute 13.5% of the world's  
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anthropogenic GHG emissions (IPCC, 2007). GHG emissions from livestock-related activities cause the 

atmosphere to warm, making pasture and livestock development a serious issue (World Bank, 2010). The IPPC 

(2014) suggests considering socioeconomic processes and climate threats due to livestock's contribution to the 

carbon level. The amount of GHGs from agriculture is 17318-1675 TgCO2eq per year, with 57% coming from 

animal-based foods, 29% from plant-based foods, and 14% from other uses. Resource-constrained livestock 

systems, particularly in sub-Saharan Africa and South Asia, contribute significantly to GHG and CO2-eq. 

(FAOSTAT, 2021). Paying attention to C stocks and GHG emissions from livestock should be a priority (Shi 

et al., 2022). 

Animal-related land use patterns can reduce greenhouse gas emissions and enhance food security. A paradigm 

shift in land use management is necessary to sequester and lower CH4 release from livestock. Two ways to 

achieve this goal include reviewing adaptation and mitigation methods, reviewing animal farming systems, and 

implementing policies that support these efforts (World Bank 2021). Grasslands and grazing strategies such as 

adaptive multipadock grazing effectively capture CH4 from the environment, promoting net C sequestration 

and storage and thus mitigating climate change effects (Mossier et al 2021). Global studies have examined the 

effects of rising demand for livestock products on land use and GHG emissions (Steinfeld and Wassenaar 

2007; Wassenara et al., 2007; Calpine et al., 2009). Human activities such as biomass removal, excessive 

stocking, and inadequate grazing management have negatively impacted grassland productivity and depleted 

soil carbon reserves (Ghosh and Mahanta, 2014). 

Research on the decomposition, transformation, and stability of soil organic matter has significantly increased 

as a result of the increasing interest in understanding the relationship between climate change and the global 

carbon cycle (Yng et al. 2022; Hisano and Chen, 2020; Thakur, et al. 2015). Soil organic carbon (SOC) is 

crucial for mitigating climate change and ensuring food production Bai and Cotrufo, 2023). Chen et al. (2023) 

suggested that increasing soil carbon and nitrogen storage can effectively combat climate change. Furthermore, 

functional diversity increased soil carbon in the mineral layer by 32%, while expanding species evenness 

increased it by 30% in the organic horizon. These results imply that enhancing soil carbon storage can be 

achieved by protecting and enhancing functionally diversified forests. Climate and land-use changes could 

alter the grassland carbon balance by altering the water budget, nutrient cycling, and plant and soil processes 

(Liu et al. 2023). 

Grasslands and their implications for C sequestration and mitigating anthropogenic CO2 emissions in 

animal agriculture. 

Grasslands may function as soil carbon sinks and store one-third of all terrestrial carbon stocks worldwide (Bai 

and Cotrufo, 2023). Furthermore, grasslands can offer low-cost or high-carbon-gain ecological alternatives 

worldwide through better grazing management and biodiversity restoration. The SOC sequestration potential is 

between 2.3 and 7.3 billion tons of CO2e per year. Plant carbon storage and microbial catabolism and 

anabolism processes are altered by climate change, which impacts grassland SOC storage. The interaction of 

temperature, rainfall, and grazing intensity in grassland soil stores leads to increased greenhouse gas emissions 

(Whitehead, 2020). 

Grasslands have been found to serve as carbon sinks, potentially reducing the rise in atmospheric carbon 

dioxide levels and contributing to climate change (Heath et al 2005). Recent advancements in soil carbon 

dynamics have revealed that 20-40% of the 1,500 Pg of C stored in upper soils has turnover times of centuries 

or less and is primarily composed of undecomposed plant material and hydrolyzable components from mineral 

surfaces (Trumbore, 1997). Research shows that managing grassland agroecosystems can significantly reduce 

carbon emissions by decreasing CH4 uptake and increasing N2O emissions (Retallack, 2013). 

Grassland-based animal production measures are crucial for improving ecosystem performance and reducing 

greenhouse gas emissions in animals (Wolf et al 2021). Improved grazing management and biodiversity 

restoration can provide low-cost and/or high-carbon-gain options for natural climate solutions in global 

grasslands (Bai and Cotrufo, 2022). Grasslands can store soil carbon and mitigate atmospheric GHG buildup, 

with the primary sources being livestock excrement and urine. Pastures emit approximately 22 g of N20–N, 

74% of which comes from anthropogenic sources (Dangal et al. 2019). They can store up to 0.5 parts per 
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millions of carbon annually and up to a meter in depth. Grazing lands cover 525 million km2, covering 40% of 

land surfaces (Gerber et al. 2013; Lorenz and Lal 2018). SOC pools in grassland soils can constitute up to 30% 

of terrestrial SOC (Lal, 2002; Follett et al 2000), and the balance of soil C stocks is influenced by plant 

photosynthesis and respiration (Schlesinger and Bernhardt, 2013). Contemporary livestock management may 

lead to changes in grassland community assemblages and plant productivity (Mlchunas and Lauenroth, 1993). 

Grazing land and their implications for C sequestration and mitigating anthropogenic CO2 emissions in 

animal agriculture. 

Grazing lands are integral to carbon (C) sequestration and the mitigation of anthropogenic CO2 emissions 

within animal agriculture (Table 2). These lands possess a substantial buffering capacity for soil maintenance 

and restoration, encompassing 40% of the terrestrial area and sequestering up to 05 Pg C annually to a depth of 

1 m (Lorenz and Lal 2018). The management of grazing lands can profoundly influence soil carbon storage, 

greenhouse gas emissions, and overall ecosystem health. Implementing effective grazing land management 

strategies can enhance carbon sequestration, reduce emissions, and promote sustainable animal agriculture 

practices. Consequently, managing grazed areas to augment soil carbon stocks may be crucial for reducing 

greenhouse gas emissions and mitigating global warming. Barrdgett et al. (2021) propose that improved 

grazing management and biodiversity restoration can provide cost-effective and high-carbon climate solutions 

in global grasslands. One-third of arable land comprises pastures and agricultural cropping systems, which can 

significantly reduce atmospheric CO2 by storing it as soil organic carbon (Jansson et al. 2021). This process 

enhances the soil carbon budget, benefiting crop productivity and soil health, and facilitates the long-term 

storage of carbon in resistant forms, which is vital for decelerating global warming. 

Effective grazing system management in animal agriculture minimizes the land footprint, C sequestration, C 

opportunity cost, and N2O emissions (Hong et al. 2021; Sekaran et al. 2021; Brewer and Gaudin,2020; Lu et 

al. 2021; Teague and Kreuter 2020). Improving soil quality indicators and storage in grassland agroecosystems 

involves using soil organic matter (SOM), preserving soil stability, and protecting SOCS pools by reducing C-

loss pathways (Abdalla et al. 2018), and it has been reported that enhancing soil quality indicators and storage 

in grazing land or grassland agroecosystems can be achieved by utilizing soil organic matter, preserving soil 

stability, and protecting SOCS pools. 

Good grazing management allows perennial plants to live and reproduce for years, promoting an ongoing cycle 

of pruning, root sloughing, and regeneration and contributing indefinitely to soil carbon. Carbon sinks, such as 

grasslands, forests, and agroecosystems, absorb more carbon than released, storing 34% of the global terrestrial 

carbon stock, with most stored in soil, unlike forests. (World Resources Institute, 2000). The management of 

grazed areas is crucial for increasing soil carbon stocks, as highlighted by Soussana and Lemaire (2014) and 

Dalamini et al. (2016). The utilization of grazing land for establishing agroecosystems enhances soil 

optimization, promotes ecological diversity, and decreases greenhouse gas emissions (Aguilera et al., 2013). 

Properly managed grazing management can enhance ecosystem function, leading to the creation of robust, 

long-lasting, and cost-effective agroecosystems (Teague and Kreuter 2020). As the intensity of ruminant 

grazing in rangelands and extensive grasslands increases, livestock production in humid and subhumid grazing 

systems is expected to increase (Thornton, 2010). Changes in ruminant-based production systems can also lead 

to net carbon sinks by improving soil health. However, the benefits of grazing and grassland enhancement on 

carbon sequestration have been inconsistently documented globally (Soussana and Lemaire, 2014; Dalamini et 

al. 2016) and in Zhou et al. 2016). 

Grazing land absorbs carbon as it develops, while animals consume carbon-containing feed, acting as a carbon 

sink. However, this carbon is converted into CO2 and methane, contributing to greenhouse gas emissions from 

livestock activities (Abdalla et al. 2018). Tropical and subtropical climate zones have longer growing seasons 

and milder winters, allowing forage species to be added as cover crops or for extended grazing seasons (Cook 

and Vizy, 2012). Higher soil organic carbon stocks enhance nutrient retention and water holding capacity, 

promoting microbiological diversity and resilience to climate change (Philippot et al 2001). The care and 

maintenance of pasture biomass and bovine grazing play a significant role in reducing greenhouse gas 

emissions and combating global warming (Gerber et al. 2013). The sequence of biological processes involved 
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in grazing management includes carbon inputs, biomass export, carbon retention, and soil organic matter 

breakdown. 

The amount of carbon absorbed from plant debris, such as fallen litter and dying roots, also varies. Ghosh and 

Mahanta (2014) reported that grazing management, forage sowing, fertilizer application, and restoration may 

all enhance grassland carbon sequestration. Persistent degradation, a changing climate, a lack of knowledge 

about the carbon stock of grasslands, disagreements over long-term carbon stock documentation methods, and 

difficulties implementing policies are some of the difficulties. For the management of grasslands to be 

sustainable, these problems must be resolved. 

 

When biomass is eliminated by grazing or cutting, inputs from aboveground biomass can be reduced by 60% 

(Soussana et al., 2010). Soil carbon storage can be influenced by the grazing regime itself, with excessive 

compensatory plant growth potentially leading to soil carbon gain (Tanentzap et al. 2012). Conversely, 

excessive grazing can result in soil carbon loss due to erosion or lower plant production and litter inputs 

(Klumpp et al. 2009). This leads to complex management effects on soil carbon storage (Zhou et al. 2016). The 

contradictory effects of liming, fertilizer application, and grazing regime on soil carbon stock, as well as 

reported increases, decreases, and no change in stock in grassland ecosystems with unique climatic and soil 

conditions, are not surprising (Mcsherry and Ritchie, 2013). The integration of improved crops, native fauna, 

and climatic and economic factors is essential for diversified forest-grassland strategies (Marsden et al 2020) 

and Mugwe and Otieno 2021). 

 

Figure 2: Grazing landscape management to boost soil carbon (C) stores (Source: Whitehead 2020). 

Whitehead (2020) study highlights the importance of grazing landscape management in enhancing soil carbon 

(C) stores (Figure 2). Forage and grazing management practices are crucial for soil C sequestration and 

reducing greenhouse gas emissions, which are essential for addressing global warming (Teague and Kreuter, 

2020). Wang et al (2021) reported that grazing lands offer numerous goods and ecosystem services, including 

forage, livestock, soil carbon storage, biodiversity, and recreational opportunities. To ensure long-term 

sustainability, optimal management is needed to balance livestock productivity while reducing environmental 

impacts like greenhouse gas emissions and soil degradation.  Cattle, sheep, and goats can provide permanent 

soil protection, reduce soil erosion, and enhance biogeochemical net storage (Smith et al. 2020. Using forage 

and ruminant species in agricultural systems improves soil ecology and performance. Soil C uptake is 

influenced by biomass removal frequency and intensity, with cutting, grazing, and restoration methods used. 
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The loss of foliage through grazing affects plant photosynthesis, limiting C inputs but increasing post grazing 

growth and causing unpleasant broad-leaved plants. (Gilbert et al. 2020). 

Perennial forages can enhance soil organic carbon (SOC) levels and lower greenhouse gas emissions in 

grasslands or rangelands where livestock graze (Godde et al. (2020)). Studies have shown that CH4 absorption 

is lower in grasslands with a long agricultural history, but seasonal mean CO2 emissions increase with 

increasing cattle stocking rates (Ma et al. (2021). Future management strategies should consider the unique 

environmental conditions and soil properties of each grassland ecosystem (Teague and Kreuter 2020; Ma et al. 

2021). Permanent forage plant protection is crucial for cattle, sheep, and goats that graze on forages to prevent 

soil erosion and increase C absorption (Stanley et al., 2018). Studying gas emissions from grasslands, fodder, 

and grazing management systems involves examining processes for increasing soil organic matter (SOC) 

stocks, stabilizing SOM into recalcitrant SOC pools, and conserving SOC pools by minimizing C loss 

pathways (Sarkar et al. 2020). Additionally, examining animal factor gas missions and managing them to 

minimize digestive gas emissions are essential. 

Animal elements during grazing contribute to sequestration, reducing digestive gas emissions and atmospheric 

gas emissions (Teague and Kreuter 2020). Poor grazing land management can increase greenhouse gas 

emissions while reducing carbon sequestration, which can increase photosynthesis and soil microorganism 

survival and reduce soil carbon discharge, thereby contributing to warming (Delgado et al. 2011). Improving 

land use patterns, plant photosynthesis duration, and the conversion of carbon into stable soil organic carbon 

can help reduce greenhouse gas emissions and protect ecosystems. Grazing impacts soil carbon and cropland 

net primary productivity, with managerial zeal and declining animal populations impacting environmental 

greenhouse gas (GHG) and grassland drains worldwide (Meier et al 2019). Soil properties, environmental 

factors, and grazing intensity can cause conflicting responses of soil microbial communities (Chang et al. [167] 

(2021). Perennial cropland grazing increases active labile and soluble carbon in soils, while grazed cropland 

soils have greater microbial carbon use efficiency (Brewer et al. 2023). 

Agro-silvo-pasture systems (ASPSs) promote carbon sequestration and mitigate anthropogenic CO2 

emissions in animal agriculture 

Nair (1989) described agro-silvo pastoralism as "the integration of woody perennials, livestock, pastures, and 

crops into the same farming system." Agroforestry technologies are increasingly recognized as a crucial 

strategy for combating global warming, particularly due to the rise of greenhouse gases, particularly carbon 

dioxide (Niar 2015). Carbon sequestration can be achieved by storing carbon in soil and vegetation, with soil-

based atmospheric CO2 storage being a crucial strategy for addressing climate change (Lal 2004). The global 

soil carbon reservoir, approximately 1500 Gt of carbon, is sensitive to climate and human disturbances, and 

agricultural soils can either source or sink atmospheric CO2 depending on their management practices and land 

use patterns (Amundson, 2001). 

Silvopastoral systems are expected to store more carbon than pure grassland systems through two main 

mechanisms: increased C storage in the biomass of trees and increased soil organic carbon (SOC) storage 

through C inputs to the soil (Matteucci et al. 2000). The litterfall rate varied from 0.42 (silvopastoral system) 

to 0.89 Mg C ha−1 yr−1 (primary forest). The higher C input in the form of litterfall in ecosystems with trees 

probably creates favourable conditions for soil microorganisms, leading to enhanced microbial activity and 

CO2 evolution or greater tree root respiration. 

Compared with traditional farming, agro-silvo pastoralism (ASPS) is an agroforestry technology that has the 

potential to help mitigate climate change by sequestering more atmospheric carbon in plant parts and soil 

(Penn State, 2018). Silvopastoral systems have significant potential for carbon storage due to their ability to 

absorb carbon from tree woody biomass, input it through litterfall, and convert it into below-ground carbon 

(Fabiola et al. 2022). Understanding the carbon (C) dynamics of silvopastoral systems can help mitigate 

greenhouse gas emissions. ASPS is considered the most attractive strategy for climate change mitigation and 

adaptation in agriculture, contributing significantly to meeting climate objectives for emission-free animal 

production (Hart et al. 2017). ASPS helps in decreasing or eliminating significant amounts of GHGs through 

increased carbon sequestration in above- and belowground biomass, as well as soil organic carbon (Aertsens et 
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al. (2013). These systems can increase carbon sequestration, offset GHG emissions, and reduce the carbon 

footprint generated by animal production. Aryal et al. (2022) demonstrated that silvopastoral systems improve 

carbon storage in areas dominated by livestock. 

Trees in agroforestry systems can increase net carbon storage, potentially reducing the carbon footprint of 

livestock, especially in developing countries (Haile et al.2008) and Palm et al. 2004). Plant diversity regulates 

productivity, biomass allocation, and SOC inputs through root exudates and litter. Microbial in vivo 

transformation is crucial for the synthesis of MAOM, while microbial ex vivo modification leads to POM 

production. Climate change affects SOC sequestration through microbial and plant processes, and other 

factors, such as plant and animal waste C inputs, compaction, grazing, and fire, influence SOC storage 

(Beillouim et al. 2023). Compared with single-species crop or pasture systems, ASPSs have greater potential to 

sequester carbon (C) due to their apparent capacity to catch and exploit growth resources more effectively 

(Nair, 2010). Furthermore, C storage is anticipated to range from 0.29 to 15.21 Mg ha−1 yr−1 aboveground 

and 30 to 300 Mg C ha−1 up to a depth of 1 m in the soil. 

Mixed crop livestock promote C sequestration and mitigate anthropogenic CO2 emissions in animal 

agriculture 

Mixed crop-livestock systems have been identified as a promising approach to promote carbon (C) 

sequestration and mitigate anthropogenic CO2 emissions in animal agriculture (Table 3). By integrating crops 

and livestock, these systems can enhance soil carbon storage, reduce greenhouse gas emissions, and promote 

more efficient use of resources. This approach has significant potential to contribute to climate change 

mitigation and sustainable agriculture practices. The use of mixed livestock crops is a method that promotes 

carbon sequestration and reduces anthropogenic CO2 emissions in animal agriculture (Choquette-Levy et al., 

2021). Crop and livestock integration systems are crucial for combating global warming by ensuring 

ecological balance and sustainable animal agricultural production, according to various studies (Reay et al., 

2020; Liu and Yuan, 2021). The UN Sustainable Development Goals mandate the reorganization of current 

mixed crop practices towards environmentally friendly agriculture (Eisenstein’s 2020). Classical mixed-crop 

and livestock farming systems, particularly for resource-constrained smallholder farmers, provide nearly two-

thirds of the world's population support (Clark and Tilma, 2017; Vermeulen et al 2012). 

Systems combining crops and livestock exhibit superior carbon sequencing performance, a crucial factor 

influencing global climate change trends (Peterson et al. 2019). Livestock crop integration enhances carbon 

sequestration and nutrient cycling, with comanagement elements such as nitrogen and phosphorus significantly 

impacting these effects (Acosta-Martnez et al. 2010; Archer and Schmeins 1991). However, no-till planting is 

a highly effective method for achieving high levels of SOC and high nitrogen fertilization in mixed crop and 

livestock systems. Crop-livestock integration enhances crop yield and soil quality by utilizing multiple 

agroecosystem elements and increasing the complexity of grazing animals (Mazzincini et al. 2011). Soil 

quality is associated with improved carbon sequestration. 

The integration of crops and livestock relies on technologically advanced production and efficiency-enhancing 

strategies, along with innovative organizational, policy, and market strategies, particularly in the context of 

agricultural value chains (Tarawali et al. (2011). Xu et al. (2023) suggested that integrating crops and animals 

can reduce greenhouse gas emissions by 17.67%, primarily by allowing manure and feed to return to the field, 

and that system reorganization can achieve a 28.09%–41.32% reduction. The impact of integrated crop-

livestock systems on greenhouse gas fluxes is variable, with management strategies crucial for limiting 

emissions (Duru and Therond, 2015). Studies show that integrating livestock into cropland can enhance 

semiarid agroecosystems, particularly carbon sequestration, and may improve the functioning of these systems 

(Sanderson et al 2013). 

The integration of grazed forage crops can enhance soil organic carbon, promoting the accumulation and 

retention of nitrogen and phosphorus (Carvalho et al. 2010; Palmer et al. 2021). Crops and livestock 

components are crucial for maintaining biogeochemical processes, increasing biological diversity, creating an 

organized environmental mosaic, and strengthening the system's adaptability to potential threats and 

catastrophes (Lemaire et al. (201). Bonaudo et al. (2014) and Amadori et al. (2022) reported that crop-
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livestock integration can be planned with varying degrees of diversity. Compared with isolated livestock 

rearing systems, integrated systems reduced N20 emissions by 27-40%, and crops such as maize and cover 

crops had 40% lower emissions. 

The study by Russell (2007) explores the relationship between mixed crop livestock and greenhouse gas 

emissions (Figure 3). Integrated crop-livestock production improves nutrient cycling and energy efficiency, 

leading to increased farm productivity and ecosystem benefits such as carbon management. Crop-livestock 

integrated systems have a substantial effect on the chemical, physical, and biological characteristics of soil that 

support carbon sequestration. The integration of crops and livestock in forage and grazing systems has led to 

increased pasture acreage and animal population, causing environmental change in grazing areas and 

necessitating more effective measures to promote soil carbon increases, affecting the biophysical and chemical 

characteristics of soils (Carvalho et al. 2018). Sekaran et al. (2021) reported that ICLSs aim to revive a 

functional agricultural system based on sustainable intensification and agroecological principles. However, 

mixed crop farms face higher energy costs, while grassland-based farms offer more flexibility in adjusting 

farming practices to minimize income decline. 

 

Figure 3. Mixed crop livestock and GHG emissions (Russel, 2007). 

Land use change and its implications for C sequestration and GHG anthropogenic gas emissions 

Land-use changes, like deforestation, increase carbon dioxide emissions by releasing stored carbon and 

creating new sources (Turner et al. 2007). This is a major contributor to global environmental change, 

primarily causing global warming. The conversion of tropical forests to agricultural land releases stored carbon 

in soil and biomass, causing significant environmental impacts (Van der Werf et al. (2009). Human activities 

like inefficient agricultural practices, deforestation, and desertification are major contributors to greenhouse 

gas emissions (Guariguata, 2009). Deforestation, a process where plants cannot absorb carbon dioxide, leads to 

increased global warming (Amoakwah et al 2022). Climate extremes can decrease regional ecosystem carbon 

stocks, potentially negating the expected increase in terrestrial carbon uptake, as highlighted by Reichstein et 

al. (2013). 

Land use change, particularly agricultural land, is a major concern in natural ecosystems, with over 50% of 

newly created agricultural land in tropical regions coming from damaged forests (Gibbs et al. (2010). This 

raises questions about ecological services and biotic diversity. Land use change is crucial for climate policy, as 
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native vegetation and soils store significant carbon, and losses from agricultural expansion account for 20-25% 

of greenhouse gas emissions (Searchinger et al. 2018). Climate policies aim to discourage land use change 

while meeting food demands, which are predicted to increase by over 50% by 2050 (Edenhofer et al. 2014). 

Land use changes significantly affect carbon sources, sinks, habitat loss, and food production, causing habitat 

loss and undermining food production (Le Quéré, et al 2013; Arneth et al 2014; Popp et al 2014). Forestry 

activities have a greater impact on carbon sequestration and storage than livestock production (Marques et al., 

2019). Proper land management strategies can prevent biodiversity loss and enhance carbon storage. However, 

land-use change deficits in biological diversity and ecological services are expected to worsen as the global 

population demands more agricultural goods (Sha et al. 2022). The replacement of land use patterns will 

determine biodiversity and ecosystem service losses. Land-use and land-management changes significantly 

affect grassland soil carbon, with effects varying regionally and climate zonewise (Roy et al. 2022; Bonan, 

2008; Dolman et al. 2003; Dale, 1997). There is no consensus between operational and global perspectives on 

land management and land-use change Wiesmeier et al. (2020). Converting arable land to grassland is an 

effective method for increasing carbon stocks, enhancing humus production, and storing CO2 in soil. 

Dumortier et al. (2010) highlighted land-use dynamics, C stock change, and land-use change as the primary 

challenges in estimating GHG emissions from agriculture. Remote sensing is the sole method for measuring 

land-use change, but its quantification is challenging due to the lack of consistent time-series data globally. 

The soil microbial component is sensitive to soil changes due to land use changes or management before other 

soil properties are detected (Gregorich et al., 2006, Acosta-Martínez et al., 2007; Ingram et al. (2008). Land-

use change plays a crucial role in addressing global environmental challenges and promoting sustainable 

development, making it essential to understand its impact on global warming. Improved GHG gas observation 

networks and in situ measurements will enable the development of country-specific emission factors (IPPCs, 

2006). Roman-Cuesta et al. (2016) proposed replacing land use-specific greenhouse emissions quantification 

and management with alternative methods to reduce uncertainties in emissions inventory data on agriculture, 

forestry, and other land uses. 

CONCLUSION 

In conclusion, the effective management of grasslands, grazing systems, and land use patterns is crucial for soil 

organic carbon management, which is vital for enhancing global environmental security and mitigating climate 

change impacts. By adopting practices such as agro-silvo pastoralism and mixed-livestock systems, we can 

increase carbon sequestration, promote soil organic carbon storage, and reduce anthropogenic CO2 emissions. 

Given the significant impact of land use changes on the environment, "land change science" should be a 

critical focus in global environmental research and sustainability efforts. Strategic land use transitions, 

including vegetative cover restoration, can help minimize carbon loss and enhance carbon accumulation. By 

prioritizing sustainable land management practices, we can improve soil carbon stocks, boost biomass 

production, and contribute to global efforts to address climate change. Future research should focus on 

quantifying carbon sequestration potential in grassland ecosystems, investigating effective management 

strategies for optimizing carbon sequestration, and examining the impacts of climate change on grassland 

ecosystems. Accurate measurements of carbon sequestration rates are crucial for informed land use decisions. 

Effective management practices, such as grazing, fire management, and restoration techniques, are also 

essential for optimizing carbon sequestration in grasslands. Research should explore the scalability of 

grassland carbon sequestration strategies and their policy implications, including incentives for landowners 

and managers. Investigations should focus on integrating grassland carbon sequestration with agricultural 

systems, including livestock production and crop rotation. By addressing these research gaps and the proposed 

future research directions, we can strengthen our understanding of grassland ecosystems as carbon sinks and 

their role in climate-smart land use and agriculture. This will enable policymakers, land managers, and 

practitioners to make informed decisions about managing grasslands for carbon sequestration and climate 

change mitigation. 
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