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ABSTRACT 

 
Infectious diseases remain a significant concern for families and society at large, causing severe impacts globally. This study 

addresses the spread of infectious diseases using the Susceptible-Infected-Removed-Vaccinated (SIRV) model. The model 

categorizes recovered individuals into two groups: those who recover through vaccination and those who recover without 

vaccination. Furthermore, the SIRV model is analyzed under two scenarios: with and without a "death factor." Unlike other 

models, vaccination is introduced directly into the infective class. The solution and stability analysis of the model reveals that 

the basic reproduction number  𝑅0 in both the disease-free and endemic states is less than one (𝑅0 < 1) indicating that the 

infectious disease gradually dies out within the population. Simulation results validate the model, providing a clear illustration 

of how vaccination significantly reduces the disease spread and ultimately eliminates it from the population. This study 

demonstrates that the introduction of vaccination into populations affected by infectious diseases is a highly effective strategy 

for minimizing disease spread. Simulated data further corroborate the findings, offering valuable insights and reinforcing the 

potential of vaccination programs to curb infectious diseases. 

Keyword: Infectious Diseases, SIRV Model, Vaccination, Disease Spread Modeling, Stability Analysis, 

Epidemic Control, Simulation, Mathematical Modeling, Disease-Free State, Endemic State, Death Factor.                                                                          

INTRODUCTION 

Recent advancements in mathematical epidemiology have enhanced our understanding of infectious disease 

dynamics, particularly through refinements of the Susceptible-Infected-Recovered (SIR) model. These 

developments have incorporated factors such as vaccination strategies, population behavior, and time-dependent 

parameters to improve predictive accuracy and inform public health interventions 

One notable extension is the inclusion of vaccination attitudes within the SIR framework. [10] developed a model 

that classifies individuals by both epidemiological status and vaccination willingness, revealing that changes in 

public opinion can destabilize endemic equilibria and lead to cyclical outbreaks. In its simplest form, the SIR 

model assumes transitions from susceptible to infected and from infected to recovered, with birth and death rates 

often excluded for clarity; [4]. 

Several models have been adapted to assess the impact of adherence to health protocols and vaccination. [20] 

introduced an SIR model that evaluates how compliance with health measures influences epidemic dynamics, 

demonstrating that strict adherence can reduce the necessity for widespread vaccination, and vice versa. Once 

parameters are estimated, the SIR model predicts an initial exponential increase in cases, followed by a 

slowdown as the susceptible population decreases, and eventually, the epidemic subsides, [8]. 

Efforts to minimize infectious diseases historically include improved sanitation, antibiotics, and vaccination, the 

latter being particularly effective in reducing the pool of susceptible individuals [22]. And the extensions of the 

SIR model has been proposed to account for varying immunity levels post-vaccination. [25] introduced the 

SIRVI model, which considers individuals with weak immunity who may transition back to the infected class,  
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providing insights into the effects of vaccination programs with less than complete immunity.  

The data reflects findings from 2000 to 2015, a period well before the COVID-19 pandemic. While these studies 

laid important groundwork in mathematical epidemiology, they do not fully underscore the relevance of the 

current research in addressing contemporary challenges in disease control. This research advances the classical 

SIRV model by incorporating vaccination directly into the infective class, analyzing two distinct cases: one 

without a death factor and the other with mortality explicitly included in each compartment. 

Stability analysis of disease-free and endemic states, computation of the reproduction number, and computer 

simulations provide a deeper understanding of the model's effectiveness in predicting and controlling infectious 

diseases. These advancements highlight the critical need to integrate behavioral factors, adaptive vaccination 

strategies, and dynamic parameters into epidemiological models. Doing so enhances the models’ ability to 

predict and control the spread of infectious diseases, offering more robust and practical insights for public health 

interventions, particularly in the context of emerging pandemics like COVID-19. 

Definition 1.  Reproduction Number: Also called the basic reproductive ratio and denoted by R, is the number 

of cases one infectious person generates on average over the course of its infectious period in a susceptible 

population. This metric is useful because it helps to determine whether or not an infectious disease can spread 

through a population. When R, <1, the infection will die out in a long run. But if R > 1 the infection will be able 

to spread in a population. Generally, the larger the value of Ro, the harder and difficult it is to control the 

epidemic. 

Definition 2.  S Susceptible: This is a part of the population that is liable to contact an infectious disease. Some 

of them may have some form of natural immunity that can keep them immune throughout a particular outbreak. 

Definition 3.  I - Infective: This is the number of people who have contacted the disease and can also transfer 

the disease to another person. In order words, they are infectious. 

Definition 4. R - Recovered: As used in this context, the recovered are the set of people who are free from the 

disease as a result of their natural immunity. 

Definition 5. V - Vaccinated: This is the number of people in the population who have recovered from the 

disease as a result of the vaccination that was administered on them. 

Definition 6.  Endemic State: An infection is said to be endemic in a population when that infection is 

maintained in the population without the need for external inputs. 

For an infection that relies on person-to-person transmission to persist in a population, each infected individual 

must, on average, transmit the disease to one other person. In a fully susceptible population, this condition 

requires the basic reproduction number (R₀) to equal one. However, in a population where some individuals are 

immune, the effective reproduction number (R) is adjusted by the proportion of the population that remains 

susceptible. For the infection to maintain an endemic steady state, the product of the effective reproduction 

number and the susceptible fraction (R × S) must equal one. This relationship ensures that the infection neither 

grows exponentially nor dies out entirely. 

Theorem 1. [16] A matrix B is equivalent to a matrix A, if B can be obtained from A by a sequence of row and 

column operation.  

Theorem 2. [16] Every matrix A is row equivalent to a unique matrix in row canonical form. 

Definition 7. Stability: An equilibrium solution fe to a system of first order differential equations is called stable 

if for every small ϵ >  0, there exists a > 0 such that every solution f(t) having initial conditions within distance 

õ, that is, Of the equilibrium remains within distance e, that is,  

||𝑓(𝑡0) – 𝑓𝑒 || <  𝛿           1.1 
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of the equilibrium remains within distance ϵ, that is, 

||f(t) – fe || <  ϵ          1.2 

for all t ≥ t0  stability means that the trajectories do not change too much under small perturbations. It is a 

situation where disturbances and perturbations in the system do necessarily affects the solution. It is a property 

of a system to remain unchanged overtime under stated and reasonably expected conditions. 

Definition 8.  Asymptotic Stability: Let x = Ax, where x(t) ∈  Rn and A is n × n  matrix solution with real 

entries, has a constant  x(t) = 0 . This solution is asymptotically stable if and only if for all 

eigenvalues λ of A, Re(λ)  <  0. 

Mathematics of Mass Vaccination 

The mathematics of mass vaccination revolves around understanding the basic reproduction number 𝑅0, which 

represents the average number of secondary infections generated by a single infectious individual in a fully 

susceptible population. If 𝑅0 > 1, the epidemic is likely to spread, while 𝑅0 < 1  indicates the infection will 

eventually die out. 

Vaccination reduces the proportion of susceptible individuals in the population, lowering 𝑅0 to an effective 

reproduction number that halts disease transmission. The critical vaccination threshold 𝑉𝑐 the proportion of the 

population that needs to be vaccinated to achieve herd immunity is given by: 

𝑉𝑐  =  
𝑅0−1

𝑅0
⇒ 𝑉𝑐 = 1 −

1

𝑅0
         2.1 

this formula highlights that herd immunity can be achieved without vaccinating the entire population, as 

vaccinated individuals indirectly protect those who remain susceptible by limiting transmission opportunities 

[5].   

Mathematical models often employ differential equations to represent these dynamics. They describe the 

changing numbers of susceptible (S), infected (I), and recovered (R) individuals over time, incorporating 

vaccination as a control measure. By ensuring that 𝑅0 is effectively reduced below 1, vaccination programs can 

mitigate or even eradicate infectious diseases [23]. 

Low Vaccination Coverage 

When vaccination coverage falls short of the critical threshold required for herd immunity, a common question 

arises: Is limited or inadequate vaccination still beneficial? The straightforward answer is yes. Limited 

vaccination provides significant benefits by directly protecting vaccinated individuals and indirectly offering 

partial protection to others in the population. Using a basic SIR epidemic model, it becomes evident that the 

impact of vaccination is linear. For instance, achieving half of the critical vaccination coverage reduces the 

prevalence of infection in the population by half. This finding underscores an important public health 

implication: administering some level of vaccination is always advantageous, even if the critical coverage is not 

met. It highlights that partial vaccination coverage still meaningfully reduces infection levels, reinforcing the 

importance of maintaining vaccination efforts regardless of whether the critical level is achieved [11]. 

Limitations of Some Vaccination Models 

Mathematical models, while invaluable tools for understanding infectious disease dynamics [14], often have 

limitations in capturing the full complexity of human populations and their interactions [2]. Therefore, prior to 

implementing any vaccination program, rigorous mathematical modeling is essential. These models must 

incorporate age-specific parameters to accurately predict the program's impact. Key considerations include the 

age-related effects of the disease, the potential for age-specific vaccine efficacy and administration rates, and the 

potential for waning immunity over time [7]. 
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Loopholes of Vaccines 

Vaccines are not always perfect, as they do not guarantee immunity for every vaccinated individual. This 

imperfection necessitates the determination of a critical vaccination threshold to achieve herd immunity. 

According to the expression  

𝑉𝑐 =
𝑅0−1

𝑅0−𝑅𝑣
            2.2 

herd immunity can be reached if 𝑅𝑣 , the proportion of immune individuals in the vaccinated population, is 

sufficient. However, if 𝑘, the fraction of vaccinated individuals who do not gain immunity, is significantly high, 

achieving herd immunity becomes infeasible. This concept hinges on two primary assumptions: the vaccine 

either offers full protection or none, or it provides partial protection by reducing susceptibility to infection. Partial 

protection lowers the probability of vaccinated individuals becoming infected and curbs the spread of infection 

within a population. Furthermore, such vaccines can expedite recovery from infections [24]. 

In scenarios where vaccines are imperfect, they are categorized as "leaky" vaccines, meaning vaccinated 

individuals can still contract and transmit the infection. Mathematical models incorporate this by introducing a 

separate compartment for vaccinated but susceptible individuals [12] Using these models, the critical vaccination 

threshold can still be determined, ensuring eradication of the disease remains plausible when 𝑅𝑣 is less than 1. 

METHODOLOGY  

Vaccination is an effective strategy for controlling infectious diseases such as diphtheria, polio, measles, and 

tuberculosis. It involves introducing weakened or dead pathogens to stimulate immunity without causing the 

disease itself [24]. This immunity can last for years or a lifetime, as shown in studies like [6], where hepatitis B 

vaccination induced long lasting protection in over 90% of participants. 

Mathematical Models in Vaccination  

Compartmental models, such as SIR, SIRS, and SVIR, are frequently used to model the spread of infectious 

diseases. These models incorporate transitions between different states, including vaccination as a factor. For 

instance, [15] integrated vaccination compartments into their models to study diseases like pertussis and 

tuberculosis, demonstrating the significance of vaccination in disease dynamics. 

Pulse Vaccination Strategy (PVS)   

The Pulse Vaccination Strategy (PVS), formulated using impulsive differential equations, schedules 

vaccinations at specific intervals to target the susceptible population and achieve herd immunity. This approach 

has been successfully implemented in countries like Nigeria, particularly in controlling poliomyelitis and 

measles outbreaks. Vaccination campaigns integrated with PVS have significantly reduced disease transmission 

and prevented epidemics, becoming a cornerstone of public health initiatives in Nigeria [21]; [9]. 

This work extends the SIRV model by introducing two distinct infected subgroups: those who recover naturally 

and those who recover through vaccination. Both groups acquire lifelong immunity post-recovery. Two 

variations of the model were analyzed: 

1. Without Death Factor: Assumes no mortality within any compartments. 

2. With Death Factor: Accounts for mortality in each compartment. 

Vaccination strategies, whether continuous or impulsive, play a critical role in reducing disease transmission. 

By incorporating vaccination for both susceptible and infected groups, this study highlights improved control of 

disease spread and long-term immunity persistence [28]; [1]. The models offer valuable insights into optimizing 

vaccination strategies across different epidemiological contexts. 
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Formulation of the SIRV Model (With No Death Factor) 

The formulation of the model is done by considering the following assumptions: 

1. The population is fixed (a sample population) 

2. The only way a person can leave the susceptible group is to become infected or receive vaccination. The 

only way a person can leave the infected class is to recover naturally or by vaccination. Once a person is 

vaccinated or recovered, the person receives immunity. Hence, vaccinated and recovered cannot be 

susceptible again. 

3. Death factor is disregarded. 

4. There is no inherited immunity. 

5. The members of the population mix homogeneously having the same interactions with one another to the 

same degree. 

Let S. 1, R denote the fractions or densities of susceptible, infected and recovered individual respectively. Let ẞ 

be the rate of transmission of disease when susceptible individuals contact the infected individuals. Let be the 

natural recovery rate of infected individuals. The recovered individuals are assumed to have immunity against 

the disease. 

To include the vaccination program, let V be a new group which came off from S and I and denotes the densities 

of susceptible and infected individuals who have been vaccinated. The vaccines are also assumed to have 

immunity against the disease. 

Let a be the rate at which susceptible individuals move into the vaccinated group as a result of vaccination. Let 

u be the rate at which the infected individuals recover as a result of the vaccination and also move into the 

vaccinated group. The details of the population flux are shown  

 

     

 

 

 

                                                  

 

 

 

 

Figure 1: SIRV Schematic model with no death factor 

The above assumptions lead to the differential equations. 

𝑑𝑠

𝑑𝑡
 = - βSI -∝S    ⇒  (Change in susceptible individuals)  

 
𝑑𝐼

𝑑𝑡
 =βSI –  𝛾I – 𝜇I  ⇒  (Change in infected individuals)    3.1 

𝑑𝑅

𝑑𝑡
 =  𝛾I    ⇒  (Change in recovered individuals) 

I S R 

V 

βSI 𝛾𝐼 

𝜇𝐼 
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𝑑𝑉

𝑑𝑡
 = ∝S +  𝜇I    ⇒  (Change in vaccinated individuals) 

It is required that the population is made up of the components, so that 

 S(t) + I(t) + R(t) + V(t) = N         3.2 

Disease-Free Equilibrium 

At the disease-free equilibrium, 

 - βSI – ∝S =0           3.3 

 βSI – 𝛾I – 𝜇I=0          3.4 

Adding (3.3) and (3.4) 

- βSI – 𝛼S + βSI – ϒI – 𝜇I= 0         3.5 

 ⇒  – 𝛼S – (𝛾I – 𝜇I)= 0         3.6 

Since 𝐼 = 0, 𝑆 = 0:  Diseases free equilibrium (𝑆 =  0, 𝐼 =  0), 𝐸0 = (S = 0, I = 0). 

The above result implies that, when the disease is free in a population (i.e I = 0 ) as shown above there will be 

no susceptible (S = 0) in the population.  

In other words, since there is no donor of infection in the population, there will be no recipient of the infection 

in the population (since I = 0,  S = 0). 

Jacobian of the Equations 

Let 𝑓. 𝑔  and 𝑤  be arbitrary dependent variables of the susceptible, infective and the vaccinated groups 

respectively. Let 𝐽(𝑆, 𝐼, 𝑉) be the Jacobian of the differential equation involving the susceptible, infective and 

the vaccinated. 

We now find the Jacobian of the systems of equation involving susceptible, infective and the vaccinated. 

𝐽(𝑆, 𝐼 , 𝑉 ) =   

(

 
 

𝜕𝑓

𝜕𝑠

𝜕𝑓

𝜕𝐼

𝜕𝑓

𝜕𝑉
𝜕𝑔

𝜕𝑠

𝜕𝑔

𝜕𝐼

𝜕𝑔

𝜕𝑉
𝜕𝑤

𝜕𝑆

𝜕𝑤

𝜕𝐼

𝜕𝑤

𝜕𝑉)

 
 
        3.7 

=  (
−𝛽𝐼 − 𝛼 −𝛽𝑆 0
𝛽𝐼 𝛽𝑆 − ϒ − 𝜇 0
𝛼 𝜇 0

)      3.8 

Let   𝐽(𝐸0)  be the jacobain at the disease-free equilibrium state. Therefore, 

 𝐽(𝐸0) = (
−𝛼 0 0
0 −ϒ − 𝜇 0
𝛼 𝜇 0

)         3.9 

Reducing the matrix above using the no-singular transformation, 

              (
−𝛼 0 0
0 −(ϒ + 𝜇) 0
𝛼 𝜇 0

)     𝑅1  + 𝑅3    (
−𝛼 0 0
0 −(ϒ + 𝜇) 0
0 𝜇 0

)             3.10 
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𝜇

ϒ+𝜇
 (𝑅2)+𝑅3     (

−𝛼 0 0
0 −(ϒ + 𝜇) 0
0 𝜇 0

) ~(
−𝛼 0
0 −(ϒ + 𝜇)

)              

Let  

 𝐴 = (
−𝛼 0
0 −ϒ − 𝜇

)            3.11 

  det(𝐴) = −∝ (−𝛾 − 𝜇) =∝ (𝛾 + 𝜇) > 0       3.12 

 Tr (A) =  −𝛼 − ϒ − 𝜇 < 0          3.13 

Using the Trace-determinant method as proposed by [19].  

That is, if det(A) >0 and Trace (A) < 0 then 

         𝜆1,2 = 
1

2
  (𝑡𝑟(𝐽)  ± √(𝑡𝑟(𝐽))2 − 4det (𝐽)      3.14 

where  ƛ1,2 are the two Eigen values that will determine the stability of the system. 

Now    

         𝜆1,2  = 
1

2
[(𝑎11 + 𝑎22) ± √(𝑎11 − 𝑎22)2 − 4(𝑎11𝑎22 − 𝑎21𝑎12)] 

           𝜆1,2  =   
1

2
[(𝑎11 + 𝑎22) ± √(𝑎11  − 𝑎22)2 − 4𝑎21𝑎12]             

           𝜆1,2 =     
1

2
[(−∝ +(−ϒ − 𝜇) ± √(−∝ +ϒ + 𝜇)2 − 4.0.0] 

          𝜆1,2 ==     
1

2
[(−∝ +(−ϒ − 𝜇) ± (−∝ +ϒ + 𝜇] 

        So that, 

                    𝜆1,=     
1

2
[((−∝ +(−ϒ − 𝜇) ± (−∝ +ϒ + 𝜇)))] 

                      = 
1

2
 (-2∝) =  −∝ 

                    𝜆1, = −∝ < 0 

 Hence, the first Eigen value is negative 

Also   

       𝜆2, = 
1

2  
 [−(∝ +ϒ + 𝜇) − (∝ +ϒ + 𝜇) ] 

              𝜆2,= −(ϒ + 𝜇) < 0 

Since  ƛ1, and ƛ2, < 0 ( I.e the values are negative) the system is asymptotically stable  

Reproduction Number (Disease-Free State) 

The reproduction number denoted by 𝑅0 is the number of secondary cases which one case of infection would 

produce in a completely susceptible population. It depends on the duration of the infectious period, the 

probability of infecting a susceptible individual during one contact and the number of new susceptible individuals 

contacted per unit time. 
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According to [18], 

Since  - (ϒ + 𝜇) < 0 then −ϒ − 𝜇 < 0 

                −ϒ <  𝜇 

                 
−ϒ

𝜇
< 1 

Therefore  𝑅0 = 
−ϒ

𝜇
 < 1  

This result means the system is stable and that the infection will drastically reduce since the reproduction number 

is less than one. 

Otherwise, if 𝑅0 =
−ϒ

𝜇
  is greater than it will be unstable which will result in the growth of the epidemic. 

Equilibrium State (Endemic) 

This is a condition where the infection exists in the population and there is the tendency for it to be sustained by 

way of the infected people infecting the susceptible. Recall that from (3.3) and (3.4) 

−𝛽𝑆𝐼 − ∝ 𝑆 =  0  

And          

𝛽𝑆𝐼 − (ϒ + 𝜇)𝐼 = 0  

 ⇒  (𝛽𝑆 − ϒ − 𝜇) 𝐼 = 0  

⇒ 𝛽𝑆 = ϒ + 𝜇  

And   

𝑆 =  
ϒ+𝜇

𝛽
  

: .   𝑆∗ = 
ϒ+𝜇

𝛽
        ``   3.15 

𝑤here 𝑆∗ is the number of susceptible at the endemic state. 

Now  

𝑆∗ = 
𝜇𝛾 

𝜇𝛽
+
𝜇

𝛽
= 

−𝜇

𝛽
 (𝑅0 − 1)  

⇒−𝛽 (
−𝜇

𝛽
 (𝑅0 − 1)) 𝐼−∝ (

−𝜇

𝛽
 (𝑅0 − 1)) = 0 

−𝛽 (
−𝜇

𝛽
  (𝑅0 − 1)) 𝐼 =∝ (

−𝜇

𝛽
 (𝑅0 − 1)) = 0   

⇒  𝐼 =

∝ (
−𝜇
𝛽
 (𝑅0 − 1))

−𝛽 (
−𝜇
𝛽
  (𝑅0 − 1))
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𝐼∗  =
−∝

𝛽
 

where I is the infective at the endemic state  Let 𝐽(𝐸0) be the Jacobian at the endemic state. 

       J (𝐸0)= (
−𝛽𝐼 − 𝛼 𝛽𝑆
𝛽𝐼 𝛽𝑆 − 𝛾 − 𝜇 
𝛼 𝜇

  0
  0
  0
)  

Substituting 𝑆∗ and 𝐼∗ into 𝐽(𝐸0) gives  

   𝐽 (𝐸0)  =  (
0 −𝛾 − 𝜇
−𝛼 0 
𝛼 𝜇

 
0
0
0
) 

Reducing the matrix above using the no-singular transformation, we have  

               (
0 −𝛾 + 𝜇
−𝛼 0 
𝛼 𝜇

  
  0
  0
0
)    𝑅2 + 𝑅3    (

0 −𝛾 + 𝜇
−𝛼 0 
𝛼 𝜇

)  

  
𝜇

𝛾+𝜇
 (𝑅1) + 𝑅3      (

0 −𝛾 + 𝜇
−𝛼 0 
𝛼 𝜇

)    ~     (
0 −(𝛾 + 𝜇)
−∝ 0

) 

    Let B =     (
0 −(𝛾 + 𝜇)
−∝ 0

) 

Finding the reproduction number, 

  𝑑𝑒𝑡 (𝐵)  =  0 − (∝ (𝛾 + 𝜇))  

       = −∝ (𝛾 + 𝜇) < 0 

                  ⇒    
−𝛾

𝜇
 < 1 

Hence   𝑅0 = 
−𝛾

𝜇
 < 1 

Formulation of the SIRV Model (With Death Factor) 

Consider a model where death occurs in each of the 𝑆 –  𝐼 –  𝑅 –  𝑉 compartments as shown below 

𝑑𝑆

𝑑𝑡
= −𝛽𝑆𝐼 − ∝ 𝑆 − 𝜃𝑆 

𝑑𝐼

𝑑𝑡
 = 𝛽𝑆𝐼 –  ϒ𝐼 –  𝑢𝐼 − 𝜃𝐼        3.16 

𝑑𝑅

𝑑𝑡
 =  ϒ𝐼 − 𝜃𝑅 

𝑑𝑉

𝑑𝑡
 = ∝ 𝑆 +  𝑢𝐼 − 𝜃𝑉  

where 𝜃 is the death rate in each of the compartments. 

Let 𝑓, 𝑔, 𝑤 𝑎𝑛𝑑 𝑞 be arbitrary dependent variables of the susceptible, infective, recovered and vaccinated groups  
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respectively. 

 

 

 

 

                                                                                                                                

 

            

 

 

 

Figure 2: 𝑆𝐼𝑅𝑉 Schematic model with death factor 

Considering the Jacobian J (SIRV) of the differential systems of equation involving the susceptible, infective, 

recovered and the vaccinated. 

  𝐽 (𝑆𝐼𝑅𝑉)  =       

(

 
 

𝜕𝑓

𝜕𝑠

𝜕𝑓

𝜕𝐼

𝜕𝑓

𝜕𝑉
𝜕𝑔

𝜕𝑠

𝜕𝑔

𝜕𝐼

𝜕𝑔

𝜕𝑉
𝜕𝑤

𝜕𝑆

𝜕𝑤

𝜕𝐼

𝜕𝑤

𝜕𝑉)

 
 

 

 

[

       −𝛽𝐼−∝ −𝜃            −𝛽𝑆                     0       0 
             𝛽𝐼            𝛽𝐼 − 𝛾 − 𝜇 − 𝜃              0         0

             
0                             𝛾                       −𝜃       0 
    ∝                             𝜇                         0     −𝜃   

]      3.17 

𝐽(𝐸0) = [

   −∝ −𝜃           0                      0       0
        0         −𝛾 − 𝜇 − 𝜃             0         0

 
     0                          𝛾                −𝜃       0    
       ∝                      𝜇                   0     −𝜃 

] 

And with the Eigen values:  

        

𝐽(𝐸0) − 𝜆𝐼 = [

   −∝ −𝜃 − 𝜆           0                      0       0
        0         −𝛾 − 𝜇 − 𝜃 − 𝜆             0         0

 
     0                          𝛾                −𝜃 − 𝜆      0    
       ∝                      𝜇                   0     −𝜃 

] 

   = ƛ4 + (4𝜃 + 𝛼 + 𝛾 + 𝜇)ƛ3 + (6𝜃2 + 3𝛼𝜃 + 3𝜃𝛾 + 3𝜃𝜇 + 𝛼𝛾 + 𝛼𝜇)ƛ2 + 

   (4𝜃3 + 3𝜃2𝛼 + 3𝜃2𝛾 + 3𝜃2𝜇 + 2𝜃𝛼𝛾 + 2𝜃𝛼𝜇)  ƛ + 𝜃2𝛼𝛾 + 𝜃2𝛼𝜇 + 𝜃3𝛼 + 𝜃3𝛾 + 𝜃3𝜇 + 𝜃4 

Let 

I S R 

V 

𝜃𝐼 𝜃𝐼 𝜃𝑅 

                                           𝛽𝑆𝐼 𝛾𝐼 

𝜇𝐼 

𝜃𝑉 
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      𝑎1 = 4𝜃 + 𝛼 + 𝛾 + 𝜇 

     𝑎2 = 6𝜃
2 + 3𝛼𝜃 + 3𝜃𝛾 + 3𝜃𝜇 + 𝛼𝛾 + 𝛼𝜇 

    𝑎3 = 4𝜃
3 + 3𝜃2𝛼 + 3𝜃2𝛾 + 3𝜃2𝜇 + 2𝛼𝛾 + 2𝜃𝛼𝜇 

    𝑎4 = 𝜃
4𝛼𝛾 + 𝜃2𝛼𝜇 + 𝜃3𝛼 + 𝜃3𝛾 + 𝜃3𝜇 + 𝜃4 

Thus 

              |𝐽 (𝐸0) − ƛ𝐼|  = 𝜆
4 + 𝑎1 𝜆

3 + 𝑎2𝜆
2 + 𝑎3𝜆 + 𝑎4 = 0 

Using Routh-Hurwitz criteria in [19] as follows: 

    𝐻1 = 𝑎1 

        𝐻2 = |
𝑎1 1
𝑎3 𝑎2

| 

        𝐻3=   |
𝑎1 1 0
𝑎3 𝑎2 𝑎1
𝑎5 𝑎4 𝑎3

| 

     𝐻4  =    |

𝑎1 1 0
𝑎3 𝑎2 𝑎1
𝑎5
𝑎7

𝑎4
𝑎6

𝑎3
𝑎5

 

    0
     0
     𝑎2
      𝑎4

| 

Hence   𝐻1 = 𝑎1 > 0 

𝐻2 = 𝑎1𝑎2 − 𝑎3   

It can be shown that 𝐻2 > 0(Since  𝛼,𝛾, 𝜇 𝑎𝑛𝑑 𝜃 > 0 

       𝐻4 = 𝑎1𝑎2𝑎3 − 𝑎1
2𝑎4 − (𝑎3)

2 

 And therefore 𝐻3 > 0\ 

       𝐻4 =
𝑎1 1 0
𝑎3 𝑎2 𝑎1
𝑎5 𝑎4 𝑎3

 
    0
     0
      −𝑎2

 

                  𝑎7 𝑎6     𝑎5   𝑎4      

       𝐻4 = 𝑎1𝑎2𝑎3 − 𝑎1
2𝑎4
2 − 𝑎3

2𝑎4 

     𝐻4 = 𝑎4(𝑎1𝑎2𝑎3 − 𝑎1
2𝑎4 − 𝑎3

2 

Recall that   𝐻3 = 𝑎4(𝑎1𝑎2𝑎3 − 𝑎1
2𝑎4 − 𝑎3

2 

                 𝐻4 = 𝑎4𝐻3 

  And since  𝐻3 > 0. 𝑖𝑠 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝐻4 > 0)   𝑠𝑖𝑛𝑐𝑒 𝑡ℎ𝑒 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑜𝑓 𝑡wo positive numbers is positive. 

By Routh Hurwitz theorem, since the determinants of  𝐻1, 𝐻2, 𝐻3 𝑎𝑛𝑑 𝐻4   are all positive, it means that the 

eigenvalues 𝜆1 + 𝜆2 + 𝜆3 𝑎𝑛𝑑  𝜆4  are all negative and this brings about the locally asymptotic stability of the 

differential equations (model). 
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Endemic State  

 Now consider a situation where there is disease (infection) in the population. Recall from (3.12) that the Jacobian 

of the SIRV model was given as 

        (

−𝛽𝐼 − 𝛼 − 𝜃 −𝛽𝑆 0
𝛽𝐼 𝛽𝑆 − ϒ − 𝜇 − 𝜃 0
0
𝛼

𝛾
𝜇

−0
0

 

     0
     0
     0
   −𝜃

)     

The linearized form of the equation (3.11) 

         𝛽𝑆𝐼 − ∝ 𝑆 − 𝜃𝑆 = 0 

𝛽𝑆𝐼 –  ϒ𝐼 –  𝜇𝐼 − 𝜃𝐼 = 0         3.18 

                     ϒ𝐼 − 𝜃𝑅 = 0 

        ∝ 𝑆 +  𝜇𝐼 − 𝜃𝑉 = 0 

from the first part of the equation 3.18, we have  

(−𝛽𝐼 − 𝛼 − 𝜃)𝑆 = 0         

And since S will not be zero, because of the endemic state it means that 

  −𝛽𝐼 − 𝛼 − 𝜃 = 0 

         I = 
𝛼+𝜃

−𝛽
    

Hence 

  𝐼∗ =
−𝛼−𝜃

−𝛽
         3.19 

Where 𝐼∗ is the infective group at the endemic state. From the second part of equation (3.18) 

                ( 𝛽𝑆𝐼 –  ϒ𝐼 –  𝑢𝐼 − 𝜃)𝐼 = 0 

And since I ≠ 0 then  

  𝛽𝑆𝐼 –  ϒ𝐼 –  𝑢𝐼 − 𝜃 = 0        3.20 

𝑆 =
𝛾+𝜇+𝜃

𝛽
          3.21 

Hence  

𝑆∗ =
𝛾+𝜇+𝜃

𝛽
          3.22 

Where 𝑆∗ is the susceptible at the endemic state, considering the third part of equation (3.18) 

               𝛾𝐼 − 𝜃𝑅 = 0 

               𝛾𝐼∗ − 𝜃𝑅∗ 

               𝑅∗  =  
𝛾𝐼∗

𝜃
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            𝑅∗  =  
  𝛾(−𝛼−𝜃)

𝛽𝜃
         3.23  

where 𝑅∗ is the density of those who recovered naturally at the endemic state. From equation the fourth part of 

equation (3.18) 

  𝛼𝑆 + 𝜇𝐼 − 𝜃𝑉 = 0 

  𝛼𝑆∗ + 𝜇𝐼∗ − 𝜃𝑉∗ = 0 

 𝑉∗ = 
  𝛼𝑆∗+𝜇𝐼∗

𝜃
     =

∝(
  𝛾+𝜇+𝜃 

𝛽
)+𝜇(

−∝−𝜃

𝛽
)

𝜃
         

  𝑉∗ =
∝𝛾

𝛽𝜃
+
𝛼−𝜇

𝛽
          3.24 

Substituting it into equation (3.17), yields 

J =  

(

 
 

−𝛽𝐼 (
−∝−𝜃

𝛽
) − 𝜃 −𝛽 (

𝛾+𝜇+𝜃

𝛽
)  0     0

𝛽 (
−∝−𝜃

𝛽
) 𝛽 (

𝛾+𝜇+𝜃

𝛽
) − ϒ − 𝜇 − 𝜃   0      0

0
0

𝛾
𝜇

  −0
       0

 
0
−0  )

 
 

  

The above substitution simplifies to  

J =  (

0 −ϒ − 𝜇 − 𝜃  0      0
−∝ −𝜃 0  0      0
0
0

𝛾
𝜇

−0
     0

 
0
−0  

)  

Putting the eigen value, we have  

 |𝐽 − 𝜆𝐼| =   |

0 − 𝜆 −ϒ − 𝜇 − 𝜃  0            0
−∝ −𝜃 0 − 𝜆  0            0
0
0

𝛾
𝜇

−0 − 𝜆
     0

 
0

−0 − 𝜆  

|  

This is simplifies to 

|𝐽 − 𝜆𝐼| =  𝜆4 + 2𝜃𝜆3 + (−𝛼𝛾 − 𝜃𝛾 − 𝜃𝜇 − 𝛼𝜃)𝜆2   

+(−2𝜃𝛾𝛼 − 2𝜃2𝛾 − 2𝜃𝛼𝜇 − 2𝜃2𝜇 − 2𝜃2𝛼 − 2𝜃3)𝜆  

−(𝜃2𝛼𝛾 + 𝜃3𝛾 + 𝜃2𝛼𝜇 + 𝜃3𝜇 + 𝜃3𝛼 + 𝜃4)  

Recall that by Routh-Hurwitz theorem 

𝜆4 + 𝑎1𝜆
3 + 𝑎2𝜆

2 + 𝑎3𝜆 + 𝑎4 = 0  

Where 

  𝑎1 =   2𝜃 

  𝑎2 =  -𝛼𝛾 − 𝜃𝛾 − 𝜃𝜇 − 𝛼𝜃 

  𝑎3 = −2𝜃𝛾𝛼 − 2𝜃2𝛾 − 2𝜃𝛼𝜇 − 2𝜃2𝜇 − 2𝜃2𝛼 − 2𝜃3 
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  𝑎4 = 𝜃
2 ∝ 𝛾 + 𝜃3𝛾 + 𝜃2𝛼𝜇 + 𝜃3𝜇 + 𝜃3𝛼 + 𝜃4 

         𝐻1 = 𝑎1 ≥ 0 ,                 𝐻2 = |
𝑎1 1
𝑎3 𝑎2

| 

          ⇒ 𝐻2 = 𝑎1𝑎2 − 𝑎3 

                 𝐻2 ≥ 0 

          𝐻3 = |
𝑎1 1 0
𝑎3 𝑎2 𝑎1
𝑎5 𝑎4 𝑎3

|  

   ⇒ 𝐻2 = 𝑎1𝑎2𝑎3 − 𝑎1
2𝑎4 − (𝑎3)

2 

                         𝐻3 ≥ 0 

          𝐻4 = |

𝑎1 1 0  0
𝑎3 𝑎2 𝑎1 0
𝑎5
𝑎7

𝑎4
𝑎6

𝑎3 𝑎2
𝑎5 𝑎4

|  

⇒ 𝐻2 = 𝑎1𝑎2𝑎3𝑎4 − 𝑎1
2𝑎4
2 − (𝑎3)

2𝑎4  

 And since 𝐻3 = 𝑎1𝑎2𝑎3 − 𝑎1
2𝑎4 − 𝑎3

2
 , it gives 𝐻4 = 𝑎4𝐻3 , therefore 𝐻4 ≥ 0 . According to [19], all 

eigenvalues have negative real parts if only if the determinants of 𝐻𝑗  called Hurwitz matrices are positive.  

 That is, 𝑑𝑒𝑡𝐻𝑗 ≥ 0; 𝑖 = 1, 2, 3, … 𝑘 

In other words, sine all the eigen values have negative real parts, it means that the system is stable. 

Reproduction Number (Disease – Free State)  

In order to find the basic reproduction number at the disease – Free State, the Routh-Hurwitz criteria in higher 

dimension is used to get the magnitude of the eigenvalues 

 Let 𝐴 = (

−𝛽𝐼 − 𝛼 − 𝜃 −𝛽𝑆 0
𝛽𝐼 𝛽𝑆 − ϒ − 𝜇 − 𝜃 0
0
𝛼

𝛾
𝜇

−0
0

 

     0
     0
     0
   −𝜃

)        3.25 

at disease free equilibrium 

𝐴 = (

−𝛼 − 𝜃 0   0
𝛽𝐼 −ϒ − 𝜇 − 𝜃   0
0
𝛼

𝛾
𝜇

−0
 0

 

     0
     0
     0
   −𝜃

)          3.26 

Expanding the determinants of the characteristic’s equation according to [17] by the last column of A and then 

by the third column, 

                       |𝐴 − 𝐼| = |

−𝛼 − 𝜃 − 𝜆 0   0
𝛽𝐼 −ϒ − 𝜇 − 𝜃 − 𝜆   0
0
𝛼

𝛾
𝜇

−0 − 𝜆
 0

 

     0
     0
     0

   −𝜃 − 𝜆

|  
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                    |−𝜃 − 𝜆| = |
−∝ −0 − 𝜆   0 0

𝜃  −𝛾 − 𝜇 − 𝜃 − 𝜆 0
0 𝛾 −0 − 𝜆

| 

                               |−𝜃 − 𝜆| |−𝜃 − 𝜆|   = |
−∝ −0 − 𝜆 0

0 −𝛾 − 𝜇 − 𝜃 − 𝜆
| 

               (−𝜃 − 𝜆) (−𝜃 − 𝜆) (−∝ −0 − 𝜆)(−𝛾 − 𝜇 − 𝜃 − 𝜆) = 0  

               (−𝜃 − 𝜆) = 0 or   (−𝜃 − 𝜆) = 0 or   (−∝ −0 − 𝜆) = 0 𝑜𝑟 (−𝛾 − 𝜇 − 𝜃 − 𝜆) = 0 

        𝜆1= −𝜃 𝑜𝑟 𝜆2 = −𝜃 0𝑟 𝜆3 = −𝛼 − 𝜃 = 0 𝑜𝑟 𝜆4 = −𝛾 − 𝜇 − 𝜃 

         Now since   ƛ4 = −𝛾 − 𝜇 − 𝜃 < 0 , then 

                                             −𝛾 − 𝜇 < 𝜃 

                                      
−𝛾−𝜇

𝜃
 < 1 

Therefore   

𝑅0 = 
−𝛾−𝜇

𝜃
                 

implying that  𝑅0 < 1.  This is true because if  𝛾 > 0, 𝜇 > 0 𝑎𝑛𝑑 𝜃 > 0 

Reproduction Number (Endemic State) 

To determine the Reproduction number when the disease is prevalent in the population (Endemic state)  

Let B be equal 3.18, Substituting the values of 𝑆∗ 𝑎𝑛𝑑 𝐼∗ from (3.19) into (3.22) respectively. 

𝐵 = |

0 −ϒ − 𝜇 − 𝜃   0
−𝛼 − 𝜃 0   0
0
0

𝛾
𝜇

−0
 0

 

     0
     0
     0
   −𝜃

| 

Still using the Routh-Hurwitz criterion in higher dimension and expand the determinant of the characteristics 

equation according to [17] by the last column of B and then by the third column to obtain the first two eigenvalues 

of B. 𝜆1 = −0 𝑎𝑛𝑑 𝜆2 = −𝜃. 

What is remaining is 2 × 2 𝑚𝑎𝑡𝑟𝑖𝑥 

                        𝐵1 =  (
0 −𝛾 − 𝜇 − 𝜃

−∝ −𝜃 0
) 

B1 is the matrix of the remaining 2 columns and rows of B. The reproduction number is obtained without 

necessarily finding the remaining two eigenvalues.  

Hence. 

−∝ (𝛾 + 𝜇 + 𝜃) − 𝜃(𝛾 + 𝜇 + 𝜃) < 0  

Since    ∝, 𝛾, 𝜇, 𝜃 > 0.   𝑇ℎ𝑒𝑛 

      −∝ (𝛾 + 𝜇 + 𝜃) < 𝜃(𝛾 + 𝜇 + 𝜃) 

        ⇒
−∝

𝜃
 < `1 
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 :. 𝑅0=−∝/𝜃 < 1 

This result shows that, even if the disease is in the population, it will gradually become reduced or completely 

extinct. Since the chances of transmitting the disease (Reproduction Number) is less than 1. 

RESULTS AND DISCUSSION 

The results obtained in previous session and the understanding of the dynamics of the infectious disease is 

applied. Numerical data is used in this session to showcase the workability of model and its stability. 

Result From the Model (With No Death Factor) 

Recall the model from equation 3.1. At disease free equilibrium, the two eigenvalues 𝜆1𝑎𝑛𝑑 𝜆2 were negative 

which means that the system is asymptotically stable. The reproduction number 𝑅0 which was also less than one 

(𝑅 =  
2

𝜇
<  1) gives an insight into the fact that the infection will drastically reduce. 

At the endemic state where the disease was prevalent, it was noticed from the result that the eigenvalues was 

also less than zero which also presupposes the locally asymptotic stability of the system. Also, the reproduction 

number 𝑅0 which was less than one also gives the hope that the disease will be eradicated since the number of 

secondary infections is less than one. 

Result From Model (With Death Factor) 

Equation 3.16, was considered, in which death factor was taken into cognizance. It is noticed that, at the disease 

– free equilibrium. All the four eigenvalues of the system (𝜆1, 𝜆2, 𝜆3 𝑎𝑛𝑑 𝜆4) were all negative and by so doing 

guarantees the stability of the system. The reproduction number was less than one according to the result which 

means that the disease in the population will gradually reduce to an insignificant value. 

Also, at the endemic state, all the parameters (the eigenvalues and the reproduction number) points to the fact 

that stability holds and that the average number of secondary infections is reduced drastically. 

From the result obtained in the models, it can be said that even though the death factor is considered or not, the 

effect of vaccination is greatly felt in the population because it has seriously helped to curb the spread of the 

disease. 

Numerical Analysis 

Data was obtained from [27] and [3] to test in real terms the validity of the result presented in chapter three. 

The data is summarized as follows;  

Table 1: Global Rate of Infection between 2000 and 2015 before Covid-19 2020 

Disease Infection Rate Death Rate Recovery Rate Vaccination Rate 

Measles 0.21 0.1 0.79 0.75 

Reubella 0.01 0.006 0.49 0.51 

Influenza 0.15 0.25 0.70 0.50 

Chicken Pox 0.04 0.001 0.65 0.9 

Small Pox 0.005 0.30 0.48 0.95 
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Figure 3: Measles Without Death Factor 

 

Figure 4: Measles With Death Factor 

Figure 5: Rubella Without Dealt Factor 
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Figure 6: Rubella With Death Factor 

 

 

 

 

 

 

 

 

 

 

Figure 7: Influenza Without Death Factor 

 

Figure 8: Influenza With Death Factor  
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Figure 9: Chicken Pox Without Death Factor 

 

 Figure 10: Chicken Pox with Death Factor 

 

Figure 11: Small Pox Without Death Factor 
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Figure 12: Small Pox With Death Factor 

In figure 3, the effect of vaccination is clearly seen both on the susceptible and the infective. The number of 

susceptible individuals drop drastically even before the 1st year is over while the infection graphically drops to 

zero. Those recovered as a result of vaccination (vaccinated group class) increases and those who recovered not 

necessarily as a result of vaccination rise steadily. 

In figure 5, even though the infection tends to increase initially from the simulation, the impact of vaccination 

caused a decrease in the infectious population to extinction after about 10 years. 

The number of susceptible reduces and those who recover without vaccination also tend to increase steadily. 

Figure 7, 9 and 11 also attest to the validity of the result presented in chapter 3 and also confirms the efficacy of 

vaccination both on the susceptible and the infectious populations. 

Another important point to note in all the figures representing the result of numerical analysis of model without 

death is that a fraction of the infectious also recovered without necessarily being vaccinated. 

The data collected were also applied on SIRV model (with death factor) and the result is as follows: 

Figures 4, 6, 8, 10 and 12 point to the fact that the disease will not spread in the population because of the impact 

of vaccination. The figures also present a reduction in the susceptible individuals. 

The simulations above confirm the earlier result presented in chapter three that when the reproduction number 

is less than one (as obtained in this work) then the disease will gradually reduce to extinction. 

Also, figure 4 and 8 presents a very interesting and important fact, concerning those recovered as a result of 

vaccination. The implication is that, since the infection has been reduced to zero and the susceptible reduced also 

to nothing, there will be no need for recovery as a result of vaccination because disease has already been wiped 

out. 

SUMMARY, CONCLUSION AND RECOMMENDATIONS 

Summary 

Motivated by the works of [13] who worked on the mathematics of vaccination and several others who 

formulated a model without vaccinating the infective. A modification of their model is done by incorporating a 

vaccination parameter into the infective group. This also brings about dividing the recovered from the infective 

into two groups viz those who recover without necessarily being vaccinated (R) and those who recover through  
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vaccination (V). 

The solution of the model was found, the reproduction number both at the disease-free state and the endemic 

state was also calculated. The stability analysis was also carried out on the two models. The results obtained in 

session 3.0 was tested using numerical data. For illustrations, data were collected and simulated to indicate the 

rapid decrease of the rate of infection and the rate of susceptibility. 

Conclusion 

The SIRV model was formulated and solved. The solution was applied to reduce the rate at which the infection 

was ravaging the population and data were collected and simulated to illustrate the result. The model plays a 

vital role in giving a direction on how the susceptible can be reduced in a population. From the result, it is worthy 

to note that even though the infection can be managed through vaccination, some individual can still recover 

without necessarily being vaccinated. However, vaccination provides a faster recovery. 

Recommendations- 

To rapidly reduce infection rates within a population and drive the disease to extinction, it is crucial that 

infectious individuals also participate in the vaccination process. Research should be conducted to determine the 

duration of immunity provided by vaccination. Understanding whether the immunity can protect against future 

outbreaks or if individuals remain susceptible after some time is essential in guiding public health strategies. 

This knowledge would help in developing effective vaccination schedules and preparedness plans for potential 

re-emergence of the disease. 

Future research should focus on updating the model with recent data, particularly from the COVID-19 pandemic, 

to enhance its relevance to current public health challenges. This would allow for an assessment of vaccine 

efficacy against new variants, the role of booster doses, and the impact of non-pharmaceutical interventions. 

Extending the model to incorporate heterogeneous mixing within the population, such as age-structured models 

or network-based approaches, would provide a more accurate representation of disease transmission dynamics. 

Sensitivity analysis should also be included to examine how variations in key parameters affect the model’s 

predictions, helping to identify the most critical factors in controlling disease spread. 

Further advancements could involve modeling waning immunity over time, which is particularly relevant for 

diseases like COVID-19 and influenza. This would allow for a better understanding of the need for booster doses 

or periodic revaccination to maintain herd immunity. Additionally, the paper should discuss the ethical and 

logistical challenges associated with mass vaccination programs, including vaccine hesitancy, equitable 

distribution, and the role of public health communication in increasing vaccine uptake. A more concise numerical 

analysis section would improve readability by focusing on key findings rather than repeating similar observations 

for each disease. 

Finally, the research could provide more detailed policy recommendations based on the model’s findings, such 

as strategies for prioritizing vaccination efforts in resource limited settings and approaches to achieving herd 

immunity in populations with varying vaccine acceptance levels. Additionally, research in electro-fluid-

dynamics (EFD) and biomechanics, including studies on micro-organism movement and cilia driven flow, could 

enhance the understanding of disease transmission in biological environments. These interdisciplinary insights 

could contribute to developing more effective public health interventions and disease control strategies. 
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