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ABSTRACT  

The study presents an innovative mathematical model analysing the epidemiology of Tuberculosis with 

silicosis coinfection. It effectively integrates epidemiological factors and historical theoretical research with 

well-structured model formulation and numerical verification through MATLAB. The use of partial 

differential equation, Jacobian matrix, deterministic techniques as well as Routh Hurwitz algebraic criteria 

plays significant role in the stability of disease-free equilibrium point and stability of the endemic equilibrium 

point analytically which indicates locally stable system asymptotically which indicates locally stable system 

asymptotically as equally demonstrated by the reproduction number. The solutions of the model equations are 

integrated using the Range Kutta Fourth order method in MATLAB and observed the impact of 𝛽2 which 

proves that the endemic equilibrium point increased for the recorded population meanwhile, decreased for the 

coinfected population as 𝛽2 increases. Since the Ro < 1, it shows that the disease-free equilibrium point is 

stable beyond 2500 days and no endemic equilibrium point exists. It is equally observed that the solution 

trajectories of the silicosis only sub-model converge to a single point believe to be disease free equilibrium 

point also known as silica free movement  

Keywords: Mathematical Modelling, Epidemiology, Tuberculosis, Silicosis and Coinfection   

INTRODUCTION 

Tuberculosis is an infectious disease caused by bacteria that mostly affects the lungs, it remains a global health 

issues due to its high mortality and it is the leading cause of death in the majority of Sub-Sahara Africa 

countries [1] and South-East Asia countries.    

Tuberculosis cases increase in the year 2013 to 2015. Nigeria came third behind India and China in the new 

tuberculosis census [2]. The effect of tuberculosis is still high and devastating till date [3]. Tuberculosis is 

caused by the bacterium mycobacterium tuberculosis and primarily affects the lungs. It is transmitted through 

the inhalation of airborne droplets containing the bacteria, making it highly contagious. In recent years, an 

emerging concern in the epidemiology of tuberculosis is its co-occurrence with silicosis. 

Silicosis is a debilitating occupational lung disease caused by inhalation of crytallin silica dust [4]. Workers in 

various industries such as mining, construction and manufacturing are at risk of developing silicosis due to 

their exposure to silica dust. The link between silicosis and TB is well-established, as silicosis weakens the 

immune system, making individuals more susceptible to TB infection and increasing the risk of progression 

from latent TB infection to active TB disease. Furthermore, the co-existence of TB and silicosis present unique 

challenges in diagnosis treatment and prevention. The co-effective poses a significant challenge for healthcare 

systems as the treatment and management of individuals with TB and silicosis require a more comprehensive 

and nuanced approach [5]. [6] studied the dynamical behaviour of epidemiological models with non-linear 

incidence rates. Their studies show that models with non-linear incidence have a much wider range of 

dynamical behaviours than those with bilinear incidences rates, far these models, there is a possibility of 

multiple attractive basins in phase space and because of that, the disease survival depends not only upon the 
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parameters but also upon the initial conditions. [7] studied the SEIR model with non-linear incidence rates in 

epidemiology. The purpose of their paper is to prove the global stability of the non-trivial equilibrium for their 

SEIR method. [8] also studied the global dynamics of a SEIR model with varying population size using the 

homogeneity of the vector field of the model to analyse the derived system of the fractions in determining the 

behaviour of the population sizes and the total population. [9] investigate a SEI TB model with immigration 

that includes infected (both Latent and Infectious) individuals. The model assumed constant recruitment with 

fixed fractions entering each class, however, they were able to prove that under certain restrictions on the 

parameters (including the treatment rates, disease transmission rate and TB induced death rate) the disease will 

approach a unique endemic level. [10] investigate the impact of immigration on the transmission dynamics of 

tuberculosis and showed that disease never dies out but becomes endemic in host areas, also, disease will 

persist in the population if there is a prevalence of TB immigrants and there will be no disease free-equilibrium 

[11] presented a SEIR tuberculosis model which incorporated treatment of infectious individuals and 

chemoprophylaxis to show that treatment of infectious individuals is more effective in the first years of 

implementation as it cleared active TB immediately. [12] investigated the importance of Heterogeneity to the 

epidemiology of Tuberculosis using mathematical modelling to simulate the spread of TB in a population 

focusing on accounting for heterogeneity in TB dynamics. Their results highlight that TB transmission is not 

uniform across the population and understanding these variations is critical for effective intervention 

strategies. A study by [13] focuses on the healthcare seeking behaviour of TB patients and the time for them to 

access care, it sheds light on the challenges and delays in the diagnostic and treatment process in a specific 

region. [14] presented a projected effects of tobacco smoking on worldwide tuberculosis control, their work 

predicted that smoking would produce an excess of 18 million tuberculosis cases and 40 million death from 

TB between 2010 and 2050 if smoking trends continued along current trajectories. [15] presented a 

mathematical model in 2019, to assess vaccination and effective contract rate impact in the spread of 

tuberculosis via deterministic epidemic model (SV ELI – (Susceptible, Vaccinated, Early Latent, Late Latent, 

Infectious). Using Lyapunor-Lasalle method to analyse the epidemic system (SVELI) around the equilibrium 

(disease free and endemic), they discovered that the global asymptotic stability of the unique endemic 

equilibrium whenever is proved, and when it is less than 1, TB can be eradicated. Also a TB date found in a 

literature related to Cameroon, shows that vaccination coverage is not sufficient to control TB, effective 

contact rate has a high impact in the spread of TB. [16] presented mathematical models of the population 

dynamics of TB for the effects of efficient treatment Versus Incomplete Treatment. His studies analyzed the 

spread, asymptotic behaviour and possible eradication of the disease versus persistence in TB. [17] study and 

presented a mathematical model to evaluate the impact of the response of TB cells and macrophages in the 

control of MTB (multi-drug resistant tuberculosis). Their analysis reveals the existence of two equilibrium 

states, infection-free equilibrium and endemically infected equilibrium which can represent a state of latent or 

active infection, depending on the amount of bacteria. [18] in their study, modelled the qualitative behaviour of 

a system of ordinary differential equations and a system of differential integral equations for the dynamics of 

disease transmission for tuberculosis and discusses. The possibility of a person infected with TB may develop 

active TB as a result of endogenous infection. [19] studies an optimal control TB mathematical model this 

include the presence of exogenous reinfection in the dynamics of the disease, modifying the model by [18] 

above. [20] presented different mathematical models and biological scales in understanding the immune 

response in tuberculosis. In their study, they use four different mathematical tools to explore both the global 

immune response as well as the more local one (granuloma formation) and compare and contrast results 

obtained using these methods. [21] presented a system of ordinary differential equations modelling the 

population of infective. [22] Investigate a first time comprehensive review of work on within host TB model 

that describe the immune response of the host to infection, including the format of lung granulomas. The 

survey application of this models to TB therapy and prevention suggest future directions to impact this global 

disease TB. [23] focus on the study of an age-structure model for TB transmission dynamics in populations 

subjected to a vaccination program. They use the theoretical results to vaccination policies to determine the 

optional age or ages at which an individual should be vaccinated, proving the existence of an endemic steady 

state when commonly used method does not apply and showing how to compute the optimal vaccination 

strategies in such situations. [24] presented a mathematical model and simulation to control the spread of 

Multidrug-resistant Tuberculosis, analyzing a suitable strategy in controlling the development of susceptible 

individuals to active TB and even multidrug-resistant TB. But in this paper, we will consider the Mathematical 

modelling of the epidemiology of Tuberculosis with silicosis co-infection. 
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Mathematical Formulation 

Model Description  

Our proposed model is an extension of the models proposed by [25] and [26]. We assumed that the susceptible 

population is increased by the recruitment at a rate Λ. All population in each compartment suffer from natural 

death rate μ. Susceptible individuals acquire TB and silicosis through contact with active TB and silicosis 

patients (including dust inhalation) by contact rates 2 1 and    respectively. Individuals exposed to TB and 

silicosis are transferred into the co-exposed class at rates  and T S   respectively. Exposed TB individuals 

could either recover from TB disease at rate   or become actively infected with TB ate rate .T  Active TB 

infected individuals could either recover from the disease at rate   or acquire silicosis infection at rate .T  

Since Silicosis infection does not have a cure the co-infected population recover from TB only at a rate of .  

We assume that silica is found throughout the earth’s crust and it is harmless until disturbed in a way that 

creates dust by a constant dust production rate M. Silica dust is lost a rate of .  Silicosis exposed individuals 

are transferred to the infected class at a rate S  while infected silicosis individuals become co-infected at a 

rate .S  Death due to TB, silicosis and the co-infection are denoted by ,  and .T S TS    

Flow Diagram of the Proposed Model 

The flow diagram of the proposed model is given in figure 2.1 below. The parameters used in the model 

description are also given below. 

 

Where; 

1   Effective contact rate for the Silicosis submodel 

2   Effective contact rate for the TB  

   Recruitment rate into Susceptible class 

T   Fraction of TB exposed individuals to be TB infected 
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S   Fraction of Silicosis exposed individuals to be Silicosis infected 

T   Silicosis infection rate from TB infected individuals 

S   TB infection rate from Silicosis infected individuals 

T   Rate at which TB exposed individuals become exposed with Silicosis 

S   Rate at which Silicosis exposed individuals become exposed with TB 

    Rate at which individuals leave the co-exposed class 

   Recovery rate of TB infected individuals 

   Recovery rate of the coinfected class 

   Natural death rate 

T   Death rate due to TB disease 

S   Death rate due to Silicosis infection 

TS   Death rate due to the coinfection 

   Silica dust deposition rate 

M   Silica dust production rate 

METHOD OF ANALYSIS  

The following system of nonlinear differential equations is derived from the flow diagram. 

1

dH
M HS H

dt
             (3.1) 

1 2 T

dS
HS SI S

dt
                (3.2) 

 2
T

T T T T

dE
SI E

dt
               (3.3) 

 1
S

S S S TS

dE
HS E E

dt
                (3.4) 

 T
T T T T T

dI
E I

dt
                 (3.5) 

 S
S S S S S

dI
E I

dt
               (3.6) 

 TS
T T S S S TS

dI
I I I

dt
                 (3.7) 
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 TS
T T S S TS

dE
E E E

dt
               (3.8) 

T
T TS T

dR
I I R

dt
              (3.9) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )T S T S TS TS TN t S t E t E t I t I t I t E t R t            (3.10) 

With (0) 0, (0) 0, (0) 0, (0) 0, (0) 0, (0) 0, (0) 0T S T S TS TSS E E I I I E        and (0) 0TR    

To understand the dynamics of the proposed model, we find the equilibrium points of the system and 

investigate the dynamics of the equilibrium points. The analysis will be done by investigating the behaviour of 

the sub-models for TB and Silicosis as well as the coinfection model. 

TB Sub-Model 

Without considering the infections of people with Silicosis, the TB sub-model is given as 

 
2 T

dS
SI S

dt
              (3.11) 

 2
T

T T T

dE
SI E

dt
              (3.12) 

 T
T T T T

dI
E I

dt
                (3.13) 

T
T T

dR
I R

dt
             (3.14) 

( ) ( ) ( ) ( ) ( )T T TN t S t E t I t R t            (3.15) 

Disease-Free Equilibrium Point (DFEP) 

The disease free equilibrium point are the points  

   , , , *,0,0,0T T TS E I R S   

To get S*, we solve the system (3.11  3.14) when 

0, 0, 0, 0T T TdE dI dRdS

dt dt dt dt
      

We get, 

2 0TSI S              (3.16) 

 2 0T T TSI E              (3.17) 

  0T T T TE I                (3.18) 

0T TI R                         (3.19) 
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From equation 3.16, we get  

*S



   

Then the DFEP becomes 

 *, *, *, * ,0,0,0T T TS E I R


 
  
 

        (3.20) 

Stability of the Disease-Free Equilibrium Point 

Theorem 3.3.1: The DFEP is locally asymptotically stable if the basic reproduction number is lesser than one 

and unstable otherwise. 

Proof:  

Let 0

TR  represent the basic reproduction number of the TB sub-model at DFEP. 

We obtain 0

TR  by the next generation matrix proposed by [24]. 

Let   be the terms which contains only secondary infections and   be the other terms which do not contain 

secondary infections. Then 0

TR  is the spectral radius of 
1.W    

Where 
2

0

TSI


 
  
 

 and 
 

 
T T

T T T T

E

E I

 


   

  
  

   
  

20

0 0

S 
   

 
 , and  

 

 

0T

T T

W
 

   

  
  

   
  

At DFEP 

20

0 0





 
  
 
  

 and    
 

 

0T

T T

W
 

   

  
  

   
  

  T TW           

Then, 

 
  

 

 
1

01 T

T TT T

W
  

      


   

  
      

  

  

 

 

2

1
0 01

0 0

T

T TT T

W


  


      



 
                 
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               
2 2

0 0

T

T T T

  

         

  
      
 
  

  

1 0W I         
2 2

0

0

T

T T T

  


         



 
  

     



  

  
2

1 ,T

T T

 


     


 

  
 2 0    

 0 1 2max ,TR     

  
2

0

T T

T T

R
 

     




  
  

The DFEP equilibrium is asymptotically stable if  

  
2

0 1T T

T T

R
 

     


 

  
  

Endemic Equilibrium Point 

The endemic equilibrium point of the TB sub-model is the solution of the system of equation (3.16  3.19).  

From equation 3.18, 

 T T

T

T

I
E

  



 
           (3.21) 

Substitute equation 3.21 into equation 3.17 

  
2 0

T T T

T

T

I
S I

    




   
  

 
  

0TI   then 
  

2 0
T T T

T

I
S

    




  
    

And  

  

2

**
T T

T

S
    

 

  
             (3.22) 

Substitute equation 3.22 into equation 3.16, we get 

     

2

0
T T T T

T

T T

I
          

  

     
     

Then, 
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  

  
2

2

**
T T T

T

T T

I
       

     

    


  
       (3.23) 

Substitute equation 3.23 into equation 3.21, we get, 

  

 
2

2

**
T T T

T

T T

E
       

   

    



       (3.24) 

Substitute equation 3.23 into equation 3.19, we get, 

  

  
2

2

**
T T T

T

T T

R
        

      

      
  

      (3.25) 

Stability of Endemic Equilibrium Point 

Theorem 3.5.1: The endemic equilibrium point is asymptotically stable if all eigenvalues of its characteristic 

polynomial are negative. 

Proof: 

Let, 

 

 

1 2

2 2

3

4

T

T T T

T T T T

T T

f SI S

f SI E

f E I

f I R

 

  

   

 

   

  

   

 

  

Then, the Jacobian matrix is given as,  

1 1 1 1

2 2 2 2

3 3 3 3

4 4 4 4

T T T

T T T

T T T

T T T

f f f f

S E I R

f f f f

S E I R
J

f f f f

S E I R

f f f f

S E I R

    
    
 
    
    
 
    
 
    

    
 
    

        (3.26) 

At EEP, 

 

 

2 2

2 2

** 0 ** 0

** ** 0

0 0

0 0

T

T T

T T

I S

I S
J

  

   

   

 

   
 

  
 
   
 

 

  

 

 

2 2

2 2

** 0 ** 0

** ** 0
0     0

0 0

0 0

T

T T

T T

I S

I S
J I J

   

    


    

  

   

   
    

   

 
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           

 

2 2

2 2

** **

** 0

T T T T

T T

I S

S I

               

    

                

     

   

         (3.27) 

On simplifying equation 3.26 we get, 

4 3 2 0X Y Z A                (3.28) 

Where, 

   
  

2 T
T T

T T

X
 

     
    


      

  
  

   
      

2 2 2T T T
T T

T T T T

Y
     

      
         

  
       

     
  

   
  2 2

2
T T

T T T

T T

Z
   

       
    

 
       

  
  

  2

2 T T TA                

By Routh Hurwitz stability criterion, equation 3.27 has all eigenvalues 0i   since all coefficients satisfy 

0, 0, 0, 0X Y Z A     and 2 2 .XYZ Z X A    

Silicosis Sub-Model 

Without considering the infections of people with TB, the Silicosis sub-model is given as,  

1

dS
HS S

dt
               (3.29) 

 1
S

S S

dE
HS E

dt
              (3.30) 

 S
S S S S

dI
E I

dt
              (3.31) 

1

dH
M HS H

dt
             (3.32) 

Disease-Free Equilibrium Point 

From the dynamics of Silicosis, if there is no silica production in the community, then it means that there is no 

Silicosis patients in the community and clearly M = 0. Then ( ) ( ) ( ) 0.S SH t E t I t     

0S SdE dIdS dH

dt dt dt dt
       

1 0HS S              (3.33) 
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 1 0S SHS E              (3.34)   0S S S SE I      

        (3.35)
1 0M HS H        

      (3.36) 

From equation 3.32 

*S



   

The DFEP is given as  *, *, *, * ,0,0,0 .S SS E I H


 
  
 

  

Stability of the Disease Free Equilibrium Point 

Theorem 3.7.1: The disease free equilibrium point is locally asymptotically stable if all eigenvalues of the 

characteristic polynomial of its Jacobian matrix are all negative. 

Proof: 

Let, 

 

 

1 1

2 1

3

4 1

S S

S S S S

g HS S

g HS E

g E I

g M HS H

 

  

  

 

   

  

  

  

  

By equation 3.26, 

 

 

1

1

1

0 0

0 0
0

0 0

0 0 0

S

DFEP

S S

J I


 




  



  


 




  


  

  

 


  

  

     1 0S


      



  
          

  
  

  1
1 2 3,      and  S


      




           

Since all eigenvalues are negative, the DFEP is locally asymptotically stable. 

Theorem 3.7.2: The DFEP is locally asymptotically stable if the basic reproduction number is lesser than 1. 
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Proof:  

Let 
0

SR  represent the basic reproduction number of the Silicosis sub-model at DFEP. We obtain 
0

SR  by the 

next generation matrix method. 

1

1

0

HS

HS







 
 


 
  

  and 

 

 
S S

S S S S

E

E I

M H

 

   



  
 

   
  

  

1

1

0 0

0 0 0

0 0









 
 
 

   
 


 
  

 and 

 

 

0 0

0

0 0

S

S SW

 

  



  
 

   
 
 

  

1

1

1

2

0

0 0 0

0 0

W I






 











    


 

  

1

2
0


  



  
      

  
  

1
1 2 2

0   and  


 



     

  1
0 1 2 2

max ,SR


 



    

The DFEP will be locally asymptotically stable if 2

1     

Determination of Endemic Equilibrium Point 

The endemic equilibrium point is the solution to the system of equations (3.33  3.36) 

From equation 3.36 

1

M
H

S 



           (3.37) 

Substitute equation 3.37 into equation 3.33 

1

1

0
M

S S
S




 
   


  

On simplifying, we get a quadratic equation of the form 

 2

1 1 1 0S M S                 (3.38) 
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We solve equation 3.38 and take only the positive root, we get, 

 
 

2

1 1 1 1 1

1

4
**

2

M M
S

       



       
      (3.39) 

Substitute equation 3.39 into equation 3.37, we get 

 

1

2

1 1 1 1 1

2
**

4

M
H

M M



       

       

     (3.40) 

Substitute equation 3.39 and equation 3.40 into equation 3.34, we get 

1**S

S

M
E



 



          (3.41) 

Substitute equation 3.41 into equation 3.31, we get, 

  
1** S

S

S S

M
I

 

   


 
         (3.42) 

Stability of the Endemic Equilibrium Point 

Theorem 3.9.1: The endemic equilibrium point is locally asymptotically stable whenever all eigenvalues of the 

characteristic equation of its Jacobian matrix are negative. 

Proof:  

 **, **, **, **
0

S SS E I H
J I    

 

  

 
 

 

 

 

2

2 1 1 1 1 1
1

2

1 1 1 1 1

2
2

1 1 1 1 11

2

1 1 1 1 1

2 1
1

2

1 1 1 1 1

4
2

0 0
24

42
0

24

0 0

2
0 0

4

S

S S

M M
M

M M

M MM

M M

M

M M

       


 
       

       
  

       

  




       

        

  
       

       
  

       

 

  


       

  2

1 1 1 1

0

4

2

M M      

 




     

 

  

On solving and simplifying this determinant equation, we get, 

4 3 2 0X Y Z A                (3.43) 

Where, 

 

 

 

2

1 1 1 1 1

2

1

2

1 1 1 1 1

4
3

2

2
     

4

S S

M M
X

M

M M

       
   





       

       
    


       
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 
   

    

 
 

2

1 1 1 1 1

2

1

2

1 1 1 1 1

4

3
2

   2

2
   2

4

S

S S

S S S S

S S

M M

Y

M

M M

          
   



       


   

       

         

   

     

   
       

  

 

     

     

    

 
     

  

  

2

1 1 1 1 1

2

1 1 1 1 1

2

1

2

1 1 1 1 1

1 1

2

4

   
2

2 4

   
2

2
   2

4

   

S S S S

S S

S S

S S S S

S S

S S

Z

M M

M M

M

M M

A

M

         

           



          


       

       

    

      

      

         



         



     
       

  

    


  

  

 

2

1 1 1

2

1

2

1 1 1 1 1

4

2

2
   

4

S S

M

M

M M

    

     

       

    

 

          

By Routh Hurwitz stability criterion, equation 3.27 has all eigenvalues 0i   if all coefficients satisfy 

0, 0, 0, 0X Y Z A     and 
2 2 .XYZ Z X A   

Analysis of the Coinfection Model 

Determination of the Disease Free Equilibrium Point 

The disease free equilibrium will occur when there is no cause of infection, and by consequence 

0, ( ) 0, ( ) 0, ( ) 0, ( ) 0, ( ) 0, ( ) 0, ( ) 0 and ( ) 0.T S T S TS TS TM H t E t E t I t I t I t E t R t           

We let, 0, 0, 0, 0, 0, 0, 0, 0  and  0S S TS TST T T
dE dI dI dEdE dI dRdH dS

dt dt dt dt dt dt dt dt dt
           

Equations (3.1  3.9) becomes 

1 0M HS H              (3.44) 

1 2 0THS SI S               (3.45) 

 2 0T T T TSI E                (3.46) 
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 1 0S S S TSHS E E                 (3.47) 

  0T T T T TE I                 (3.48) 

  0S S S S SE I                (3.49) 

  0T T S S S TSI I I                 (3.50) 

  0T T S S TSE E E               (3.51) 

0T TS TI I R               (3.52) 

At DFEP,  

*S



   

DFEP = ,0,0,0,0,0,0,0,0


 
 
 

  

Stability of the Disease Free Equilibrium 

Theorem 3.12.1: The disease free equilibrium point is locally asymptotically stable if the basic reproduction 

number 0 1.TSR    

Proof: we obtain 0

TSR  by the next generation matrix method. 
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GRAPHICAL RESULTS   

We now present graphical results using Runge Kutta fourth order method in MATLAB and the parameter 

values are described in the respective subsections. 

 

Figure 4.1: Solutions of the TB sub-model with parameter values 

20.2,  0.01,  =0.04, =0.066, 0.02 and 0.81T T          with basic reproduction number 0 0.37815.TR   
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Figure 4.2: The solution curves of the susceptible, infected, and recovered populations for different initial 

values of the TB only model at DFEP 

 

Figure 4.3: Solutions of the TB sub-model with parameter values 

20.1,  0.2,  =0.04, =0.066, 0.02 and 0.81T T         with  basic reproduction number 0 3.7815.TR    
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Figure 4.4: The stable solution curves of the susceptible, infected, and recovered populations for different 

initial values of the TB only model using parameter values of the Figure 4.3 in which its basic reproduction 

number is greater than unity ( 0 3.7815TR   ). 

Silicosis Sub-Model 

We present the numerical solutions to the Silicosis sub-model using initial conditions for state variables 

(0) 0.8,  (0) 0.7,  (0) 0.4  and  H(0) 0.2S SS E I     and the parameter values described in each figure.  
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Figure 4.5: Numerical simulations showing the solution trajectories of the Silicosis sub-model converging to a 

single point believed to be the disease-free equilibrium (or silica-free environment).  (a) M = 0 and S



  (b) 

M = 0 for infected population at DFEP (c)  

Effect of Parameter M on the fraction of infected population at endemic equilibrium. The parameter values are, 

10.2,  0.5,  =0.04, =0.7, 0.3 and 0.85.S S           

TB-Silicosis Coinfection Model 

In this subsection, we present the numerical solutions of the coinfection model. In doing so, we used initial 

values of the state variables for the coinfection model given as 

(0) 0.8,  (0) 0.7,  (0) 0.7,  (0) 0.4,  (0) 0.4,  (0) 0.7,  (0) 0.4,  S T T S TS TSS E E I I E I        and (0) 0.2.TR   The 

parameter values used are 20.2, 0.01, 0.04, 0.066, 0.02,T          

0.81, 0.001, 0.02, 0.01, 0.5, 0.002, 0.003, 0.1, 0.3,T T T S S TS S                

1 0.5, 0.85,  and =0.5.S       
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Figure 4.6: Solutions of the TB-Silicosis coinfection model at DFEP with M = 0 and basic reproduction 

number 0 0.33088.TSR    

 

Figure 4.7: Solutions of the TB-Silicosis coinfection model at EEP with M = 0.0001 and basic reproduction 

number 0 3.3088.TSR    
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Sensitivity Analysis of the Coinfection Model 

In this section, we perform the sensitivity analysis of the model parameter 1  for the TB-Silicosis coinfection 

model. The sensitivity of a parameter reflects how the model behaviour responds to a small change in a 

parameter value, and it is defined as in [24]. 

 

Figure 4.8: Effect of change in 2  on the recovered and coinfected populations of the combined model. 

DISCUSSION 

Figure 4.1 presents the solution of the TB sub-model using the parameter values described in the caption. The 

basic reproduction number is obtained as 0 0.37815 1TR    which implies the disease free equilibrium point is 

stable beyond 2500 days, and no endemic equilibrium point exists. Using different initial conditions for each 

compartment, all solution curves converge to the disease-free equilibrium point as seen in Figure 4.2. In Figure 

4.1, the susceptible populations approach to the value of Λ/μ, while the other compartments go to zero, which 

supports our analytical findings in the previous sections. 

Figure 4.3 illustrates the time serious plot of the TB sub-model, for which its basic reproduction number is 

greater than one. In the analytical findings, we have shown that the disease-free equilibrium point is unstable, 

and the endemic equilibrium point is stable. Using different initial conditions for each compartment, all 

solution curves converge to the endemic equilibrium point as seen for the susceptible, infected, and recovered 

plots of Figure 4.4. As time goes, in figures 4.4(a)–4.4(c), the solutions get close to the endemic equilibrium 

point, which agrees with the analytical properties. 

In figures 4.5(a) and 4.5(b), it is observed by testing different initial conditions, that the solution trajectories of 

the Silicosis only sub-model converge to a single point believed to be the disease free equilibrium point (or 

silica-free environment) while in figure 4.5(b)  compared different silica dust production rate on the silica and 

also observed that all curves converge towards the endemic equilibrium point. 

Figure 4.6 shows the solution curves of the coinfection model where the disease-free equilibrium is stable, 

while figure 4.7 shows the solution curves where the disease-free equilibrium is unstable and the endemic 

equilibrium is stable. 

Figures 4.5 and 4.6 show the effects of the TB transmission rate 2  on the recovered population and TB-

Silicosis coinfected individuals. 
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CONCLUSION 

This work formulates mathematical model to study the transmission pattern of tuberculosis and silicosis 

coinfection. Through analytical studies, it is determined that the disease free equilibrium point and endemic 

equilibrium point through which establishment of stability of the TB-only sub-model, Silicosis-only sub-model 

and the coinfection model were achieved. It is also determined that the reproduction number of each sub-

model and the coinfection model, which was also key in establishing stability. The investigation went further 

to numerically simulate the results of the proposed model and obtained the time series plots for each sub-model 

and the coinfection model. It is observed that the numerical results agreed with  analytical findings. Lastly, 

sensitivity analysis on the model parameter 2 to determine the model response to it was carried out and 

observed that the endemic equilibrium point increased for the recovered population but decreased for the 

coinfected population as 2 increases.  

REFERENCES 

1. Ojo, M. M; Benson, T. O; Peter, O. J. & Goufo, E.F.D (2022), Non-linear optimal control strategies for 

a mathematical model of COVID-19 and influenza co-infection. Phys A state Mech. Its Appl. 

607,128173. 

2. World Health Organization (WHO) (2021). Global Tuberculosis Report, WHO Report. 

3. Parsons, L.M., Somoskovi, Aji Gutierrez, C.; Lee, E. (2011). Laboratory diagnosis of tuberculosis in 

resource-poor countries: challenges and opportunities. Clin. Microbiol. Rev. 24(2): 314. 

4. Rees D, & Murray J. Silica, (2007). Silicosis and tuberculosis. Int. J. Tuber Lung Dis. 11(5): 474484. 

5. Yang Q; Lin, M.; He, Z.; Liu, X.; Xu, Y.; Wu, J.; Sun, F.; Jiang, T.; Gao, Y.; Huang. X.; Zhang, W.; 

Ruan, Q.; & Shao, L. (2022). Mycobacterium tuberculosis Infection among 1,659 silicosis patients in 

Zhejiang Province, China. Microbiology Spectrum, 10(6). 

6. Liu, W.M., Hetchote, H.W. & Levin, S.A (2022) Influence of non-linear incidence rates upon 

epidemiological models. J. Matt. Biol., 23: 187-204. 

7. Li, M.Y. & J. Muldowney, (2019). Global stability for the SEIR model in epidemiology Math. Biosci, 

12, 155-164. 

8. Li, M.Y; Graef JR.; Wang L.C; & Karsai J. (2020). Global dynamics of a SEIR model with a varying 

total population size. Math. Biosci 160: 191-213. 

9. McChuokey Connell, C. & Van Den Driessche, P. (2023). Global Analysis of Two Tuberculosis 

Models. Journal of Dynamics and Differential Equations, 16(1), 0100-0139. 

10. Jia ZW, Jia XW, Liu YX, Dye C, Chen F, & Chen F, & Chen CS (2016) Spatial analysis of 

tuberculosis cases in migrants and permanent residents. Emerg. Infect Dis; 14:1413-9. 

11. Bhunu, C.P.; Garira, W.; Mukandavire, Z.; & Zimba, M. (2008). Tuberculosis Transmission Model ith 

chemoprophylaxis and Treatment Bulletin of Mathematical Biology, 70, 1163-1191. 

12. Traver, J.M; Dodd, P.J. & Gomes, M.G.M. (2019). The importance of Heterogeneity to the 

Epidemiology of Tuberculosis. Clinical infectious Diseases 69(1), 159-166. 

13. Yimer, S.A., Bjune, G.A.; & Holm-Hansen, C. (2019). “Time to first consultation, diagnosis and 

treatment of TB among patients attending a referral hospital in northwest Ethiopia”. BMC Infectious 

Diseases, 19(1), 814. 

14. Basu, S.; Stuckler, D.; Bitton A; Glantz, S.A. (2011). Projected effect of tobacco smoking on 

worldwide tuberculosis control: Mathematical modelling analysis. Bmj, 343. 

15. Nkamba, L.N., Manga, T.T; Agouanet, F., & Mann Manyombe, M.L. (2019). Mathematical model to 

assess vaccination and effective contact rate impact in the spread of tuberculosis. Journal of Biological 

Dynamics 13(1), 26-42. 

16. Ayodeji O. Adebiyi (2016). Mathematical modelling of the population dynamics of tuberculosis. 

University of the Western Cape, 1-92. 

17. Lourdes Esteva, Eduardo Ibarguen-Mondragon, Leslie Chavez-Galan (2011). Mathematical 

biosciences and engineering & (4), 973-986. 

18. Zhilan Feng, W. Hung & Carlos Castillo-Charez (2001) on the role of variable latent periods in 

mathematical model for Tuberculosis. Journal of Dynamic and Differential Equations 13(2), 425-452. 

https://rsisinternational.org/journals/ijrias
https://rsisinternational.org/journals/ijrias
http://www.rsisinternational.org/


INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN APPLIED SCIENCE (IJRIAS) 

ISSN No. 2454-6194 | DOI: 10.51584/IJRIAS |Volume X Issue II February 2025 

 

 

 

 

 

www.rsisinternational.org Page 624 

 

 

    

 

19. Rachik, M.; Hattaf. K.; Saddis, S. Tabit Y. & Yousfi N. (2009), optimal control of tuberculosis with 

exogenous reinfection. Appl. Math. Sci. 3(5): 231-240. 

20. David Gammack, Suman Garrigue, Simeon Mario, Jose Segovia-Juarez, & Denise E. Kirschner (2005). 

Understanding the immune response in Tuberculosis using Different Mathematical Models and 

Biological Scales. Society for Industrial and Applied Mathematics, 3(2), 312-345. DOI:101128/CMR. 

00059-10. 

21. Okuonghae, C. & Aihie, V.U. (2010). Optional control measures for Tuberculosis. Mathematical 

models including immigration and isolation of infective. Journal of Biological systems 18(1), 17-54. 

22. Elseje Pienaar, Denise Kirschner, Simeon Marino & Jennifer J. Linderma (2017). A Review of 

Computational and Mathematical modeling contributions to our understanding of Mycobacterium 

tuberculosis within-host infection and treatments. PMC Pub.Med, 3, 170-185. 

23. Carlos Castillo-Chavez, & Z. Feng. (1998). Global stability of an age-structure model for TB and its 

applications to optimal vaccination strategies. International Journal of Mathematical Biosciences 151, 

135-154. 

24. Van den Driessche, P.; & Watmough, J. (2002). Reproduction number and sub-threshold endemic 

equilibria for compartmental models of disease transmission. Mathematical Biosciences, 180(1-2), 29-

48. 

25. Tenkam, H. M., Goufo, E. D., Tsanou, B., Hassan, A. S., Hussaini, N., & Terefe, Y. A. (2020). 

Classical and fractional analysis of the effects of Silicosis in a Mining Community. Alexandria 

Engineering Journal, 59(4), 2683-2694. 

26. Abdul Halim, N. (2013). Tuberculosis Model: A Mathematical Analysis (Doctoral dissertation, 

University of Malaya). 

https://rsisinternational.org/journals/ijrias
https://rsisinternational.org/journals/ijrias
http://www.rsisinternational.org/

