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ABSTRACT 

Disease generally are disorder in plants or animals. The study examined the transmission dynamics of 

secondary syphilis that is co-infected with measles. The work basically is divided into four important 

compartments which are immigration factor in the susceptible, syphilis infected, syphilis latent and measles 

infected compartment. It was observed that no infection free equilibrium exists analytically due to immigration 

factor, thus, the endemic equilibrium points as the only equilibrium point was obtained. The analytical 

investigation of the behaviour of the sub-models for secondary syphilis and measles was done with the help of 

deterministic techniques. It is observed that the asymptotically stable system since all coefficients of equation 

are positive. Finally, the numerical investigation with the help of MATLAB established the sensitivity of the 

parameters such that while an increase in all parameters considered increased, the co-infected class did not 

show any effect on co-infected class. Due to the introduction of immigration factor, the disease-free 

equilibrium did not exist. Through analytical studies, it is determined that the endemic equilibrium point 

through which the establishment of the stability of the secondary syphilis and measles sub-models and the 

coinfection model were achieved. The study went further to numerically simulate the results of the proposed 

model and obtained the time series plots for each sub-model and the coinfection model. It is observed that the 

numerical results agreed with analytical findings. It also established the sensitivity of the parameters 

𝛼𝑀𝑆, 𝜎, 𝜑𝑀 , 𝜑𝑆 and 𝜑𝑉 and observed while an increase in all parameters considered increased in the co-

infected class though 𝜑𝑉 did not show any effect on co-infected class. 
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INTRODUCTION 

A disease is any harmful deviation from the normal structural and functional state of an organism, generally 

associated with certain signs and symptoms indicative of an organism abnormal state. 

Dynamics in this context, refers to the way people interact and work together. The dynamics of any infections 

disease are heavily dependent on the rate of transmission from infections to susceptible hosts. 

Mathematical modeling is the earliest method used to formulate epidemic spread [1]. The first mathematical 

model of infectious disease transmission was constructed in 1760 [2], in other to determine the effectiveness of 

relation, a crude form of small pox vaccination. 

In 1906, [2] proposed a discrete time model to understand the recurrence of measles epidemics [1]. In 1911, [1] 

equally developed differential equations to investigate the effectiveness of various strategies for malaria. [3] 

then extent [1] models to form a dynamic system model of infectious disease transmission, which is also called 

compartment model. They found that only if the basic reproduction number was larger than a threshold value, 

could an infectious disease spread in a susceptible population. The population is assumed to be homogenous, 

well-mixed, and aggregated into a small set of compartments according to individual health states [4] divided 

infectious individuals into two sub-groups: super spreaders and regular spreaders, when they studied super 

spreading events by using compartment models. Also, [5] integrated human behaviour into the variable of 

average infection rate in order to study the impact that human behaviour change have on epidemic spread. The 
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pattern of human mobility is a determine factor of epidemic diffusion [6]. The random walk-model [7] is used 

to represent human mobility patterns. This model formulation of a path consists of a succession of random 

steps and explains that an individual move within a finite space where the individual can move to each position 

the same probability. 

Syphilis is a major severally transmitted disease and has been affecting millions of individuals both in low-

and-high-income countries of the world [8]. It is a systemic disease caused by Treponema pallidum bacterium 

which is mainly transmitted through sex, blood contact, mother to child during birth [9]. Diagnosis, treatment, 

and using condom are the basic control mechanisms [8]. If left untreated, syphilis progresses through four 

stages: Primary, Secondary, Latent, and Tertiary [10]. The first three infection stages can transmit the disease 

to other susceptible groups of individuals, the transmission can occur via sexual contact and in most cases, the 

tertiary stage is not transmissible through sexual contact [11]. Approximately, 90% of new syphilis substantial 

morbidity and mortality data are recorded in low-in-come countries around the world [12]. Co-infection is an 

infection of an individual with two or more micro-organisms species [13]. 

Measles is an infectious disease which was first acknowledged in Boston in 1675 by [14]. It is acute and highly 

infectious vital disease caused by morbillivirus (measles virus) for which humans are the only reservoirs [15]. 

In the last two decades, the global cases of measles have been decking before the emergence of covid-19 

pandemic. The number of measles infections increased in 2019, reaching 869, 770 cases 207,500 deaths which 

is the highest incidence of the disease since 1996 [16]. Recently there has been an increase in measles 

infections in sub-saharan Africa with 17,500 cases altogether as of January 2022, a 400% spike from cases 

reported in 2021 [17]. The primary source of transmission is through direct contact with the nose and throat 

secretions of an infected person or by aerosolized droplets [15]. When measles virus infects a non-immune 

population, almost everyone will become infected [18]. According to [17], the virus survives in the atmosphere 

for up to two hours when an infected individual’s coughs or sneezes. 

To study the dynamics of measles illness spread, numerous researchers have designed various mathematical 

models [19] developed a mathematical model of measles, transmission dynamics for measles epidemiology 

considering the impact of exposed individuals to the latest period and discussed through stability analysis and 

numerical simulation [20] formulated the SEIRV model for measles and the model has shown importance of 

measles vaccination in preventing transmission within a population. They conclude from their findings that the 

spread of a disease largely depends on the contact rates and also the proportion of the population that is 

immune exceed the herds immunity level of measles. [21] investigated an infection in which population is 

divided into susceptible, latent, infected, post infection and recovered using ordinary differential equation. 

Another simulation of measles transmission dynamics under the intervention of vaccination was performed by 

[22] to investigate the transmission of measles virus using the five categories of susceptible, vaccinated, 

exposed infectious and recovered individuals with demographic factors using the deterministic compartment 

model. [23] developed a model of measles transmission dynamics with double dose vaccination. The model 

was used to determine the significant role of stochastic approach and the analysis of positivity of solution, 

invariant region of the solution, the existence of equilibrium points and their stability and sensitivity analysis 

of parameters of the basic reproductive number of both the model analyzed and done in deterministic and 

stochastic approaches. A model formulated by [24] on measles dynamics of network tries to emphasize a 

transmission rate and theoretically examine the threshold dynamics to investigate the influence of 

heterogeneity and warning immunity of measles transmission dynamics. [25] recently developed open a novel 

transmission dynamics model to evaluate the effects of monitored vaccination program to control and 

eliminate measles. In this paper, we studied the transmission dynamics of secondary syphilis co-infected with 

measles. 

Mathematical Formulation  

Model Variables Definition 

The total sexually active population at time t, denoted by 𝑁(𝑡) is subdivided into the mutually exclusive 

compartments of susceptible individuals (𝑁(𝑡)), vaccinated individuals for measles infection (𝑉(𝑡)), 
population of secondary syphilis infected and infectious individuals (𝐼𝑆(𝑡)), latently infected syphilis 

population (𝐿𝑆(𝑡)), measles infected individuals (𝐼𝑀(𝑡)), who are capable of transmitting the disease, 
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population of infectious individuals with secondary stage syphilis and measles co-infection (𝐼𝑀𝑆(𝑡)), 
individuals who recover from the infection (𝑅(𝑡)) and individuals undergoing treatment for secondary syphilis 
(𝑇(𝑡)).  

The constant recruitment of secondary syphilis infected and infectious individuals, latently infected syphilis 

individuals and measles infected individuals into the population will cause the disease never to die out hence 

no disease-free equilibrium. 

Basic Assumptions of the Model 

The proposed model has the following basic assumptions: 

 The local density of the total population is a constant though the total population size may vary 

with time. 

 Individuals infected with secondary syphilis can be infected with measles and vice versa. 

 Individuals co-infected with secondary syphilis and measles can transmit either syphilis or measles.  

 Co-infected individuals can recover from either secondary syphilis or measles at the same time. 

 There are two different infection rates, namely, the infection rate of secondary syphilis (𝛽𝑆) and the 

infection rate of measles(𝛽𝑀). Infection rate for singly infected and co-infected individuals are 

assumed to be the same. 

 Vaccinated individuals automatically recovers from measles infection but could be infected with 

secondary syphilis by coming in contact with syphilis infectious individuals. 

 Recovered individuals acquire permanent immunity and are not susceptible. 

 The recovery rates for all compartments are different. 

 Co-infected individuals have a higher death rate than singly infected individuals do. 

 Natural death rate is the same for all compartments. 

Model Parameters Definition 

The parameters used in the proposed model are defined as follows 

𝛬 = Rate of recruitment  

𝛽𝑆 = Force of infection between susceptible, syphilis infected and co-infected individuals 

𝛽𝑀 = Force of infection between susceptible, measles infected and co-infected individuals 

𝛽𝑉 = Force of infection between vaccinated and syphilis infected individuals 

𝛿 = Fraction of syphilis infected individuals to become latent for syphilis 

𝜌 = Treatment rate of syphilis latent individuals 

𝛼𝑀 = Rate at which co-infected individuals recover from measles 

𝛼𝑆 = Rate at which co-infected individuals recover from secondary syphilis 
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𝛼𝑀𝑆 = Rate at which co-infected individuals recover from the co-infection 

𝜎 = Rate at which susceptible individuals receive measles vaccine 

𝑑𝑆 = Death rate due to secondary syphilis infection 

𝑑𝑀 = Death rate due to measles infection 

𝑑𝑀𝑆 = Death rate due to co-infection 

𝜀 = Recovery rate of measles infected individuals 

𝜏 = Recovery rate individuals undergoing syphilis treatment 

𝛾 = Recovery rate of measles vaccinated individuals 

𝜇 = Natural death rate  

𝜑𝑀 = Contact rate between susceptible individuals and measles infected individuals 

𝜑𝑆 = Contact rate between susceptible individuals and secondary syphilis infected individuals 

𝜑𝑉 = Contact rate between measles vaccinated individuals and secondary syphilis infected individuals  

𝜅 = Recovery rate for syphilis infected population      

Model Formulation  

The mathematical model for the spread of secondary syphilis co-infected with measles based on the model 

description and basic assumptions is given by the following system of nonlinear ordinary differential 

equations. 

𝑑𝑆

𝑑𝑡
= (1 − 𝑎 − 𝑏 − 𝑐)𝛬𝑁 − (𝜎 + 𝜇 + 𝛽𝑀 + 𝛽𝑆)𝑆          (3.1) 

𝑑𝐼𝑆

𝑑𝑡
= 𝑎𝛬𝑁 + (𝛽𝑆 − 𝛽𝑀)𝑆 − (𝜇 + 𝑑𝑆 + 𝜅 + 𝛿)𝐼𝑆 + 𝛼𝑀𝐼𝑀𝑆 + 𝛽𝑉𝑉        (3.2) 

𝑑𝐼𝑀

𝑑𝑡
= 𝑐𝛬𝑁 + (𝛽𝑀 − 𝛽𝑆)𝑆 − (𝜇 + 𝑑𝑀 + 𝜀)𝐼𝑀 + 𝛼𝑆𝐼𝑀𝑆         (3.3) 

𝑑𝐼𝑀𝑆

𝑑𝑡
= (𝛽𝑀 + 𝛽𝑆)𝑆 − (𝜇 + 𝑑𝑀𝑆 + 𝛼𝑀 + 𝛼𝑆 + 𝛼𝑀𝑆)𝐼𝑀𝑆         (3.4) 

 
𝑑𝐿𝑆

𝑑𝑡
= 𝑏𝛬𝑁 + 𝛿𝐼𝑆 − (𝜇 + 𝜌 + 𝑑𝑠)𝐿𝑆            (3.5) 

𝑑𝑇

𝑑𝑡
= 𝜌𝐿𝑆 − (𝜇 + 𝜏 + 𝑑𝑠)𝑇             (3.6) 

𝑑𝑉

𝑑𝑡
= 𝜎𝑆 − 𝛽𝑉𝑉 − (𝜇 + 𝛾)𝑉             (3.7) 

𝑑𝑅

𝑑𝑡
= 𝜅𝐼𝑆 + 𝜀𝐼𝑀 + 𝛼𝑀𝑆𝐼𝑀𝑆 + 𝜏𝑇 + 𝛾𝑉 − 𝜇𝑅           (3.8) 

With initial conditions  

𝑆(0) > 0, 𝐼𝑆(0) ≥ 0, 𝐼𝑀(0) ≥ 0, 𝐼𝑀𝑆(0) ≥ 0, 𝐿𝑆(0) ≥ 0, 𝑇(0) ≥ 0, 𝑉(0) ≥ 0 and 𝑅(0) ≥ 0.     (3.9) 
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Where  

𝛽𝑆 =
𝜑𝑆(𝐼𝑆+𝐼𝑀𝑆)

𝑁
            (3.10) 

𝛽𝑀 =
𝜑𝑀(𝐼𝑀+𝐼𝑀𝑆)

𝑁
            (3.11) 

𝛽𝑉 =
𝜑𝑉𝐼𝑆

𝑁
             (3.12) 

Model Analysis 

To understand the dynamics of the proposed model, we find the equilibrium points of the system and 

investigate the dynamics of the equilibrium points. Since no infection free equilibrium exist due to 

immigration factor, the endemic equilibrium point is the only equilibrium point under consideration. The 

analysis will be done by investigating the behavior of the sub-models for secondary syphilis and measles. 

Determination of Endemic Equilibrium Point of the Syphilis Submodel 

Without considering the infections of people with measles, the syphilis sub-model is given as 

𝑑𝑆

𝑑𝑡
= (1 − 𝑎 − 𝑏 − 𝑐)𝛬𝑁 − (𝜇 + 𝛽𝑆)𝑆         (3.13) 

𝑑𝐼𝑆

𝑑𝑡
= 𝑎𝛬𝑁 + 𝛽𝑆𝑆 − (𝜇 + 𝑑𝑆 + 𝜅 + 𝛿)𝐼𝑆         (3.14) 

𝑑𝐿𝑆

𝑑𝑡
= 𝑏𝛬𝑁 + 𝛿𝐼𝑆 − (𝜇 + 𝜌 + 𝑑𝑠)𝐿𝑆          (3.15) 

𝑑𝑇

𝑑𝑡
= 𝜌𝐿𝑆 − (𝜇 + 𝜏 + 𝑑𝑠)𝑇           (3.16) 

𝑑𝑅

𝑑𝑡
= 𝜅𝐼𝑆 + 𝜏𝑇 − 𝜇𝑅            (3.17) 

and  

𝛽𝑆 =
𝜑𝑆𝐼𝑆

𝑁
             (3.18) 

We obtain the steady state solution by letting 

𝑑𝑆

𝑑𝑡
=

𝑑𝐼𝑆

𝑑𝑡
=

𝑑𝐿𝑆

𝑑𝑡
=

𝑑𝑇

𝑑𝑡
=

𝑑𝑅

𝑑𝑡
= 0  

We obtain the steady state solution by letting 

 
𝑑𝑆

𝑑𝑡
=

𝑑𝐼𝑆

𝑑𝑡
=

𝑑𝐼𝑀

𝑑𝑡
=

𝑑𝐼𝑀𝑆

𝑑𝑡
=

𝑑𝐿𝑆

𝑑𝑡
=

𝑑𝑇

𝑑𝑡
=

𝑑𝑉

𝑑𝑡
=

𝑑𝑅

𝑑𝑡
= 0  

in equations (3.13 − 3.17) and solving the resulting equations for 𝑆, 𝐼𝑆, 𝐿𝑆, 𝑇 and 𝑅.  

we get the following, 

(1 − 𝑎 − 𝑏 − 𝑐)𝛬𝑁 − (𝜇 + 𝛽𝑆)𝑆 = 0         (3.19) 

𝑎𝛬𝑁 + 𝛽𝑆𝑆 − (𝜇 + 𝑑𝑆 + 𝜅 + 𝛿)𝐼𝑆 = 0         (3.20) 

𝑏𝛬𝑁 + 𝛿𝐼𝑆 − (𝜇 + 𝜌 + 𝑑𝑠)𝐿𝑆 = 0          (3.21) 

𝜌𝐿𝑆 − (𝜇 + 𝜏 + 𝑑𝑠)𝑇 = 0           (3.22) 
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𝜅𝐼𝑆 + 𝜏𝑇 − 𝜇𝑅 = 0            (3.23) 

From equation 3.19, 

𝑆 =
(1−𝑎−𝑏−𝑐)𝛬𝑁

(𝜇+𝛽𝑆)
                       (3.24) 

Substitute equation 3.24 into equation 3.20, we get, 

𝑎𝛬𝑁 + 𝛽𝑆
(1−𝑎−𝑏−𝑐)𝛬𝑁

(𝜇+𝛽𝑆)
− (𝜇 + 𝑑𝑆 + 𝜅 + 𝛿)𝐼𝑆 = 0  

We solve for 𝐼𝑆 and get 

𝐼𝑆 =
𝛽𝑆(1−𝑎−𝑏−𝑐)𝛬𝑁+𝑎𝛬𝑁(𝜇+𝛽𝑆)

(𝜇+𝑑𝑆+𝜅+𝛿)(𝜇+𝛽𝑆)
            (3.25) 

Substitute equation 3.25 into equation 3.18, we get a quadratic equation to be solved for 𝛽𝑆 as shown below 

(𝜇 + 𝑑𝑆 + 𝜅 + 𝛿)𝛽𝑆
2 + [(𝜇 + 𝑑𝑆 + 𝜅 + 𝛿)𝜇 − (1 − 𝑎 − 𝑏 − 𝑐)𝛬𝜑𝑆 − 𝑎𝛬𝜑𝑆]𝛽𝑆 − 𝑎𝛬𝜑𝑆𝜇 = 0  

𝛽𝑆 = −
[(𝜇+𝑑𝑆+𝜅+𝛿)𝜇−(1−𝑎−𝑏−𝑐)𝛬𝜑𝑆−𝑎𝛬𝜑𝑆]±𝛥

2(𝜇+𝑑𝑆+𝜅+𝛿)
                   (3.26) 

Where 𝛥 is given as 

𝛥 = √[(𝜇 + 𝑑𝑆 + 𝜅 + 𝛿)𝜇 − (1 − 𝑎 − 𝑏 − 𝑐)𝛬𝜑𝑆 − 𝑎𝛬𝜑𝑆]2 + 4𝑎𝛬𝜑𝑆𝜇(𝜇 + 𝑑𝑆 + 𝜅 + 𝛿)  

Substitute equation 3.25 into equation 3.21, 

𝑏𝛬𝑁 + 𝛿
𝛽𝑆(1−𝑎−𝑏−𝑐)𝛬𝑁+𝑎𝛬𝑁(𝜇+𝛽𝑆)

(𝜇+𝑑𝑆+𝜅+𝛿)(𝜇+𝛽𝑆)
− (𝜇 + 𝜌 + 𝑑𝑠)𝐿𝑆 = 0  

Then solving for 𝐿𝑆 we get, 

𝐿𝑆 =
𝑏𝛬𝑁

(𝜇+𝜌+𝑑𝑠)
+

𝛿[𝛽𝑆(1−𝑎−𝑏−𝑐)𝛬𝑁+𝑎𝛬𝑁(𝜇+𝛽𝑆)]

(𝜇+𝜌+𝑑𝑠)(𝜇+𝑑𝑆+𝜅+𝛿)(𝜇+𝛽𝑆)
              (3.27) 

Substitute equation 3.27 into equation 3.22, 

 𝑇 =
𝜌

(𝜇+𝜏+𝑑𝑠)
[

𝑏𝛬𝑁

(𝜇+𝜌+𝑑𝑠)
+

𝛿[𝛽𝑆(1−𝑎−𝑏−𝑐)𝛬𝑁+𝑎𝛬𝑁(𝜇+𝛽𝑆)]

(𝜇+𝜌+𝑑𝑠)(𝜇+𝑑𝑆+𝜅+𝛿)(𝜇+𝛽𝑆)
]             (3.28) 

Substitute equation 3.25 and equation 3.28 in equation 3.23 to get 

𝜅 [
𝑏𝛬𝑁

(𝜇 + 𝜌 + 𝑑𝑠)
+

𝛿[𝛽𝑆(1 − 𝑎 − 𝑏 − 𝑐)𝛬𝑁 + 𝑎𝛬𝑁(𝜇 + 𝛽𝑆)]

(𝜇 + 𝜌 + 𝑑𝑠)(𝜇 + 𝑑𝑆 + 𝜅 + 𝛿)(𝜇 + 𝛽𝑆)
] 

 

+𝜏
𝜌

(𝜇+𝜏+𝑑𝑠)
[

𝑏𝛬𝑁

(𝜇+𝜌+𝑑𝑠)
+

𝛿[𝛽𝑆(1−𝑎−𝑏−𝑐)𝛬𝑁+𝑎𝛬𝑁(𝜇+𝛽𝑆)]

(𝜇+𝜌+𝑑𝑠)(𝜇+𝑑𝑆+𝜅+𝛿)(𝜇+𝛽𝑆)
] − 𝜇𝑅 = 0  

On solving for R, we get, 

𝑅 =
𝜅

𝜇
[

𝑏𝛬𝑁

(𝜇 + 𝜌 + 𝑑𝑠)
+

𝛿[𝛽𝑆(1 − 𝑎 − 𝑏 − 𝑐)𝛬𝑁 + 𝑎𝛬𝑁(𝜇 + 𝛽𝑆)]

(𝜇 + 𝜌 + 𝑑𝑠)(𝜇 + 𝑑𝑆 + 𝜅 + 𝛿)(𝜇 + 𝛽𝑆)
] 

      +
𝜏𝜌

𝜇(𝜇+𝜏+𝑑𝑠)
[

𝑏𝛬𝑁

(𝜇+𝜌+𝑑𝑠)
+

𝛿[𝛽𝑆(1−𝑎−𝑏−𝑐)𝛬𝑁+𝑎𝛬𝑁(𝜇+𝛽𝑆)]

(𝜇+𝜌+𝑑𝑠)(𝜇+𝑑𝑆+𝜅+𝛿)(𝜇+𝛽𝑆)
]             (3.29) 

Due to the nature of 𝛽𝑆 obtained in equation 3.26, two equilibria points exist. 
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Local Stability of Endemic Equilibrium Points 

Theorem 3.3.1: The endemic equilibrium point is locally asymptotically stable if all eigenvalues of its 

characteristic polynomial are negative. 

Proof: 

We linearize equations (3.13 − 3.17) by making the following substitutions and obtaining the Jacobian matrix 

as shown below; 

𝑓1 = (1 − 𝑎 − 𝑏 − 𝑐)𝛬𝑁 − (𝜇 + 𝛽𝑆)𝑆 
𝑓2 = 𝑎𝛬𝑁 + 𝛽𝑆𝑆 − (𝜇 + 𝑑𝑆 + 𝜅 + 𝛿)𝐼𝑆 
𝑓3 = 𝑏𝛬𝑁 + 𝛿𝐼𝑆 − (𝜇 + 𝜌 + 𝑑𝑠)𝐿𝑆 
𝑓4 = 𝜌𝐿𝑆 − (𝜇 + 𝜏 + 𝑑𝑠)𝑇 

𝑓5 = 𝜅𝐼𝑆 + 𝜏𝑇 − 𝜇𝑅  

𝐽 =

[
 
 
 
 
 
 
 
 
𝜕𝑓1

𝜕𝑆

𝜕𝑓1

𝜕𝐼𝑆

𝜕𝑓1

𝜕𝐿𝑆

𝜕𝑓1

𝜕𝑇

𝜕𝑓1

𝜕𝑅

𝜕𝑓2

𝜕𝑆

𝜕𝑓2

𝜕𝐼𝑆

𝜕𝑓2

𝜕𝐿𝑆

𝜕𝑓2

𝜕𝑇

𝜕𝑓2

𝜕𝑅

𝜕𝑓3

𝜕𝑆

𝜕𝑓3

𝜕𝐼𝑆

𝜕𝑓3

𝜕𝐿𝑆

𝜕𝑓3

𝜕𝑇

𝜕𝑓3

𝜕𝑅

𝜕𝑓4

𝜕𝑆

𝜕𝑓4

𝜕𝐼𝑆

𝜕𝑓4

𝜕𝐿𝑆

𝜕𝑓4

𝜕𝑇

𝜕𝑓4

𝜕𝑅

𝜕𝑓5

𝜕𝑆

𝜕𝑓5

𝜕𝐼𝑆

𝜕𝑓5

𝜕𝐿𝑆

𝜕𝑓5

𝜕𝑇

𝜕𝑓5

𝜕𝑅 ]
 
 
 
 
 
 
 
 

          (3.30) 

At endemic equilibria 

𝐽 =

[
 
 
 
 
 
 −(𝜇 + 𝛽𝑆) −

𝜑𝑆𝑆

𝑁
0 0 0

𝛽𝑆

𝜑𝑆𝑆

𝑁
− (𝜇 + 𝑑𝑆 + 𝜅 + 𝛿) 0 0 0

0 0 𝛿 − (𝜇 + 𝜌 + 𝑑𝑠) 0 0

0 0 𝜌 −(𝜇 + 𝜏 + 𝑑𝑠) 0
0 𝜅 0 𝜏 −𝜇]

 
 
 
 
 
 

 

  

|𝐽 − 𝜆𝐼| = 0 ⇒  

 

|

|

−(𝜇 + 𝛽𝑆) − 𝜆 −
𝜑𝑆𝑆

𝑁
0 0 0

𝛽𝑆
𝜑𝑆𝑆

𝑁
− (𝜇 + 𝑑𝑆 + 𝜅 + 𝛿) − 𝜆 0 0 0

0 0 𝛿 − (𝜇 + 𝜌 + 𝑑𝑠) − 𝜆 0 0

0 0 𝜌 −(𝜇 + 𝜏 + 𝑑𝑠) − 𝜆 0
0 𝜅 0 𝜏 −𝜇 − 𝜆

|

|

= 0 

 (3.31) 

On solving equation 3.31, we get, 

𝜆5 + 𝐴𝜆4 + 𝐵𝜆3 + 𝐶𝜆2 + 𝐷𝜆 + 𝐸 = 0          (3.32) 

Where  

𝐴 = ((𝜇 + 𝑑𝑆 + 𝜅 + 𝛿) + 𝛽𝑆 + (𝜇 + 𝜏 + 𝑑𝑠) − 𝛿 + 2𝜇 + (𝜇 + 𝜌 + 𝑑𝑠) −
𝜑𝑆𝑆

𝑁
) 
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𝐵 = (𝜇 + 𝑑𝑆 + 𝜅 + 𝛿)(𝛽𝑆 + (𝜇 + 𝜏 + 𝑑𝑠) − 𝛿 + 2𝜇 + (𝜇 + 𝜌 + 𝑑𝑠)) 

     + (𝜇 + 𝜏 + 𝑑𝑠) (𝛽𝑆 − 𝛿 + 2𝜇 + (𝜇 + 𝜌 + 𝑑𝑠) −
𝜑𝑆𝑆

𝑁
) 

     + (𝜇 + 𝜌 + 𝑑𝑠) (𝛽𝑆 + 2𝜇 −
𝜑𝑆𝑆

𝑁
) − 𝛽𝑆𝛿 + 𝛽𝑆𝜇 − 2𝛿𝜇 +

𝛿𝜑𝑆𝑆

𝑁
+ 𝜇2 

 

𝐶 = (𝜇 + 𝑑𝑆 + 𝜅 + 𝛿)(𝜇 + 𝜏 + 𝑑𝑠)(𝛽𝑆 − 𝛿 + 2𝜇 + (𝜇 + 𝜌 + 𝑑𝑠)) 

     + (𝜇 + 𝑑𝑆 + 𝜅 + 𝛿)(𝜇 + 𝜌 + 𝑑𝑠)(𝛽𝑆 + 2𝜇) + (𝜇 + 𝜌 + 𝑑𝑠)(𝜇 + 𝜏 + 𝑑𝑠) (𝛽𝑆 + 2𝜇 −
𝜑𝑆𝑆

𝑁
) 

     + (𝜇 + 𝑑𝑆 + 𝜅 + 𝛿)𝛽𝑆(𝜇 − 𝛿) + (𝜇 + 𝜏 + 𝑑𝑠)𝛽𝑆(𝜇 − 𝛿) +
𝜑𝑆𝑆

𝑁
(𝜇 + 𝜏 + 𝑑𝑠)(𝛿 − 2𝜇) 

     + 𝜇2(𝜇 + 𝑑𝑆 + 𝜅 + 𝛿) − 2𝛿𝜇(𝜇 + 𝑑𝑆 + 𝜅 + 𝛿) − 𝛽𝑆𝜇𝛿 + 𝛽𝑆𝜇(𝜇 + 𝜌 + 𝑑𝑠) 
     − 2𝛿𝜇(𝜇 + 𝜏 + 𝑑𝑠) − 𝛿𝜇2 + 𝜇2(𝜇 + 𝜏 + 𝑑𝑠)  

𝐷 = (𝜇 + 𝑑𝑆 + 𝜅 + 𝛿)(𝜇 + 𝜏 + 𝑑𝑠)(𝛽𝑆𝜇 − 𝛽𝑆𝛿 + 𝛽𝑆(𝜇 + 𝜌 + 𝑑𝑠) − 2𝜇𝛿 + 𝜇2 + 2𝜇(𝜇 + 𝜌 + 𝑑𝑠)) 

     + (𝜇 + 𝜌 + 𝑑𝑠)(𝜇 + 𝑑𝑆 + 𝜅 + 𝛿)(𝛽𝑆𝜇 + 𝜇2) + (𝜇 + 𝜌 + 𝑑𝑠)(𝜇 + 𝜏 + 𝑑𝑠) (𝛽𝑆𝜇 + 𝜇2 − 2𝜇
𝜑𝑆𝑆

𝑁
) 

     − (𝜇 + 𝑑𝑆 + 𝜅 + 𝛿)𝛿𝜇(𝛽𝑆 + 𝜇) + (𝜇 + 𝜏 + 𝑑𝑠) (−𝛽𝑆𝛿𝜇 − 𝛿𝜇2 + 2𝛿
𝜑𝑆𝑆

𝑁
− 𝜇2

𝜑𝑆𝑆

𝑁
) + 𝛿𝜇2

𝜑𝑆𝑆

𝑁
 

     − 𝜇2
𝜑𝑆𝑆

𝑁
(𝜇 + 𝜌 + 𝑑𝑠) 

 
𝐸 = 𝜇(𝜇 + 𝑑𝑆 + 𝜅 + 𝛿)(𝜇 + 𝜏 + 𝑑𝑠)(𝛽𝑆(𝜇 + 𝜌 + 𝑑𝑠) − 𝛽𝑆𝛿𝜇 − 𝛿𝜇 + 𝜇(𝜇 + 𝜌 + 𝑑𝑠)) 

     + 𝜇2 𝜑𝑆𝑆

𝑁
(𝜇 + 𝜏 + 𝑑𝑠)(𝛿 − (𝜇 + 𝜌 + 𝑑𝑠))  

All eigenvalues of equation 3.32 will be negative if one or all values 𝛽𝑆 and 𝑆 produce non-negative 

coefficients. This fact will be verified numerically in subsequent sections of this project 

Determination of Endemic Equilibrium Point of the Measles Submodel 

Without considering the infections of people with syphilis, the measles sub-model is given as 

𝑑𝑆

𝑑𝑡
= (1 − 𝑎 − 𝑏 − 𝑐)𝛬𝑁 − (𝜎 + 𝜇 + 𝛽𝑀)𝑆       (3.33) 

𝑑𝐼𝑀

𝑑𝑡
= 𝑐𝛬𝑁 + 𝛽𝑀𝑆 − (𝜇 + 𝑑𝑀 + 𝜀)𝐼𝑀         (3.34) 

𝑑𝑉

𝑑𝑡
= 𝜎𝑆 − (𝜇 + 𝛾)𝑉            (3.35) 

𝑑𝑅

𝑑𝑡
= 𝜀𝐼𝑀 + 𝛾𝑉 − 𝜇𝑅            (3.36) 

And 

𝛽𝑀 =
𝜑𝑀𝐼𝑀

𝑁
             (3.37) 

We obtain the steady state solution by equating equations (3.33 − 3.36) to zero and solve for the variables. 

(1 − 𝑎 − 𝑏 − 𝑐)𝛬𝑁 − (𝜎 + 𝜇 + 𝛽𝑀)𝑆 = 0         (3.38) 

𝑐𝛬𝑁 + 𝛽𝑀𝑆 − (𝜇 + 𝑑𝑀 + 𝜀)𝐼𝑀 = 0          (3.39) 
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𝜎𝑆 − (𝜇 + 𝛾)𝑉 = 0            (3.40) 

𝜀𝐼𝑀 + 𝛾𝑉 − 𝜇𝑅 = 0            (3.41) 

From equation 3.38, 

𝑆 =
(1−𝑎−𝑏−𝑐)𝛬𝑁

(𝜇+𝜎+𝛽𝑀)
             (3.42) 

Substitute equation 3.42 into equations 3.39 and 3.40, we get, 

𝑐𝛬𝑁 + 𝛽𝑀

(1 − 𝑎 − 𝑏 − 𝑐)𝛬𝑁

(𝜇 + 𝜎 + 𝛽𝑀)
− (𝜇 + 𝑑𝑀 + 𝜀)𝐼𝑀 = 0 

𝐼𝑀 =
𝛽𝑀(1−𝑎−𝑏−𝑐)𝛬𝑁+𝑐𝛬𝑁(𝜇+𝜎+𝛽𝑀)

(𝜇+𝜎+𝛽𝑀)(𝜇+𝑑𝑀+𝜀)
               (3.43) 

And  

𝜎
(1−𝑎−𝑏−𝑐)𝛬𝑁

(𝜇+𝜎+𝛽𝑀)
− (𝜇 + 𝛾)𝑉 = 0  

𝑉 =
𝜎(1−𝑎−𝑏−𝑐)𝛬𝑁

(𝜇+𝜎+𝛽𝑀)(𝜇+𝛾)
             (3.44) 

Substitute equations 3.43 and 3.44 into equation 3.41,  

 𝜀
𝛽𝑀(1−𝑎−𝑏−𝑐)𝛬𝑁+𝑐𝛬𝑁(𝜇+𝜎+𝛽𝑀)

(𝜇+𝜎+𝛽𝑀)(𝜇+𝑑𝑀+𝜀)
+ 𝛾

𝜎(1−𝑎−𝑏−𝑐)𝛬𝑁

(𝜇+𝜎+𝛽𝑀)(𝜇+𝛾)
− 𝜇𝑅 = 0  

𝑅 =
𝛾𝜎(𝜇+𝜎+𝛽𝑀)(1−𝑎−𝑏−𝑐)𝛬𝑁+𝜀(𝜇+𝛾)(𝛽𝑀(1−𝑎−𝑏−𝑐)𝛬𝑁+𝑐𝛬𝑁(𝜇+𝜎+𝛽𝑀))

𝜇(𝜇+𝜎+𝛽𝑀)(𝜇+𝛾)(𝜇+𝑑𝑀+𝜀)
        (3.45) 

To obtain 𝛽𝑀 we substitute equation 3.43 into equation 3.37, a quadratic equation is obtained given as 

(𝜇 + 𝑑𝑀 + 𝜀)𝛽𝑀
2 + [(𝜇 + 𝑑𝑀 + 𝜀)𝜇 − (1 − 𝑎 − 𝑏 − 𝑐)𝛬𝜑𝑀 − 𝑐𝛬𝜑𝑀]𝛽𝑀 − 𝑐𝛬𝜑𝑀𝜇 = 0  

𝛽𝑀 = −
[(𝜇+𝑑𝑀+𝜀)𝜇−(1−𝑎−𝑏−𝑐)𝛬𝜑𝑀−𝑐𝛬𝜑𝑀]±𝛥

2(𝜇+𝑑𝑀+𝜀)
             (3.45) 

Where, 

𝛥 = √[(𝜇 + 𝑑𝑀 + 𝜀)𝜇 − (1 − 𝑎 − 𝑏 − 𝑐)𝛬𝜑𝑀 − 𝑐𝛬𝜑𝑀]2 + 4𝑐𝛬𝜑𝑀𝜇(𝜇 + 𝑑𝑀 + 𝜀)  

Due to the nature of 𝛽𝑆 obtained in equation 3.26, two equilibria points exist. 

Local Stability of Endemic Equilibrium Points 

Theorem 3.5.1: The endemic equilibrium point is locally asymptotically stable if all eigenvalues of its 

characteristic polynomial are negative. 

Proof: 

We linearize equations (3.33 − 3.36) by making the following substitutions and obtaining the Jacobian matrix 

as shown below 
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𝑓1 = (1 − 𝑎 − 𝑏 − 𝑐)𝛬𝑁 − (𝜎 + 𝜇 + 𝛽𝑀)𝑆 
𝑓2 = 𝑐𝛬𝑁 + 𝛽𝑀𝑆 − (𝜇 + 𝑑𝑀 + 𝜀)𝐼𝑀 
𝑓3 = 𝜎𝑆 − (𝜇 + 𝛾)𝑉 

𝑓4 = 𝜀𝐼𝑀 + 𝛾𝑉 − 𝜇𝑅  

𝐽 =

[
 
 
 
 −(𝜎 + 𝜇 + 𝛽𝑀) −

𝜑𝑀𝑆

𝑁
0 0

𝛽𝑀
𝜑𝑀𝑆

𝑁
− (𝜇 + 𝑑𝑀 + 𝜀) 0 0

𝜎 0 −(𝜇 + 𝛾) 0
0 𝜀 𝛾 −𝜇]

 
 
 
 

  

|𝐽 − 𝜆𝐼| = 0 ⇒  

 
|
|

−(𝜎 + 𝜇 + 𝛽𝑀) − 𝜆 −
𝜑𝑀𝑆

𝑁
0 0

𝛽𝑀
𝜑𝑀𝑆

𝑁
− (𝜇 + 𝑑𝑀 + 𝜀) − 𝜆 0 0

𝜎 0 −(𝜇 + 𝛾) − 𝜆 0
0 𝜀 𝛾 −𝜇 − 𝜆

|
|
= 0    (3.46) 

We solve equation 3.46 and get 

𝜆4 + 𝐴𝜆3 + 𝐵𝜆2 + 𝐶𝜆 + 𝐷 = 0          (3.47) 

Where, 

𝐴 = 𝛽𝑀 + 4𝜇 + 𝑑𝑀 + 𝜀 −
𝜑𝑀𝑆

𝑁
+ 𝛾 + 𝜎  

𝐵 = (𝜇 + 𝑑𝑀 + 𝜀)(𝛽𝑀 + 3𝜇 + 𝛾 + 𝜎) + 2𝛽𝑀𝜇 + 𝛽𝑀𝛾 − (3𝜇 + 𝛾 + 𝜎)
𝜑𝑀𝑆

𝑁
+ 3𝜇2 + 2𝜇𝛾 + 2𝜇𝜎 + 𝛾𝜎  

𝐶 = (𝜇 + 𝑑𝑀 + 𝜀)(2𝛽𝑀𝜇 + 𝛽𝑀𝛾 + 3𝜇2 + 2𝜇𝛾 + 2𝜇𝜎 + 𝛾𝜎) − (3𝜇2 + 2𝜇𝛾 + 2𝜇𝜎 + 𝛾𝜎)
𝜑𝑀𝑆

𝑁
 

      + 𝛽𝑀𝜇2 + 𝛽𝑀𝜇𝛾 + 𝜇3 + 𝜇2𝛾 + 𝜇2𝜎 + 𝜇𝛾𝜎 
 

𝐷 = (𝜇 + 𝑑𝑀 + 𝜀)(𝛽𝑀𝜇2 + 𝛽𝑀𝜇𝛾 + 𝜇3 + 𝜇2𝛾 + 𝜇2𝜎 + 𝜇𝛾𝜎) − (𝜇3 + 𝜇2𝛾 + 𝜇2𝜎 + 𝜇𝛾𝜎)
𝜑𝑀𝑆

𝑁
  

All eigenvalues of equation 3.47 will be negative if one or all values 𝛽𝑀 and 𝑆 produce non-negative 

coefficients. This fact will also be verified numerically in subsequent sections of this project. 

Full Model Endemic Equilibrium Point and Stability 

The co-infection model endemic equilibrium point is denoted by 

𝐸𝑀𝑆 = (𝑆∗, 𝐼𝑆
∗, 𝐼𝑀

∗ , 𝐼𝑀𝑆
∗ , 𝐿𝑆

∗ , 𝑇∗, 𝑉∗, 𝑅∗)  

The explicit calculations of the co-infection model endemic equilibrium point in terms of the model parameters 

are tedious analytically. We have shown its stability in the time series plot in the next chapter. 

RESULTS  

The results were obtained with the help of matlab as seen below.  
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Numerical Verification of Endemic Equilibrium Points 

In the previous section , we obtained two equilibrium points for the secondary syphilis and measles sub models 

due to the nature of their respective forces of infections 𝛽𝑆and 𝛽𝑀 . Using the parameter values in table 4.1 

when substituted into equations 3.26 and 3.45 we obtain two results for 𝛽𝑀 which are 𝛽𝑀1
= -0.35778 and 

𝛽𝑀2 = 0.014153. Since 0 < 𝛽𝑀 < 1, we choose 𝛽𝑀 = 𝛽𝑀2 = 0.014153. For the chosen 𝛽𝑀 we obtain the 

following results;  

𝐴 = 1.3631, 𝐵 = 0.61272, 𝐶 = 0.10038 and 𝐷 = 0.0049992𝑆 = 248.28, 𝐼𝑀 = 77.557,𝑉 = 653.37and 𝑅 =
1156.8.  

We observe that the endemic equilibrium point given as 𝐸𝑀 = (248.28,77.557,653.37,1156.8) is 

asymptotically stable since all coefficients of equation 3.47 are positive. 

Similarly, two results were obtained for 𝛽𝑆 given as 𝛽𝑆1
= 0.0022791 and 𝛽𝑆2 = 0.16859. Since both results 

occur in the feasible region of 𝛽𝑆 i.e positive, we obtain two equilibrium points. 

For 𝛽𝑆1
:  𝐸𝑆1 = (1625.5,77.833,463.3,2984.3,2521.7)  

For 𝛽𝑆2
: 𝐸𝑆2 = (580.07,214.19,532.64,3430.9,2899.1)  

We check the stability of each equilibrium point by computing A,B,C,D and E according to the equation 3.32. 

we obtain the following results; 

For 𝛽𝑆1
:   𝐴 = 0.38933, 𝐵 = -0.50801, 𝐶 = -0.25098,𝐷 = -0.031861 and 𝐸 = -0.0011978.  

For 𝛽𝑆2
: 𝐴 = 1.4965, 𝐵 = 0.87613, 𝐶 = 0.28162,𝐷 = 0.045576 and 𝐸 = 0.0043393.  

From the results obtained, 𝐸𝑆2 is asymptotically stable while 𝐸𝑆1 is unstable. 

Model Solution 

In order to solve the model, we have used the following parameter values 

Table 4.1: Parameter values of proposed model 

S/N Parameter Numeric value S/N Parameter Numeric value 

1 𝛬 0.5 12 𝜏 0.5 

2 𝛿 0.3 13 𝛾 0.1 

3 𝜌 0.4 14 𝜇 0.09 

4 𝛼𝑀 0.3 15 𝜑𝑀 0.85 

5 𝛼𝑆 0.8 16 𝜑𝑆 0.9 

6 𝛼𝑀𝑆 0.3 17 𝜑𝑉 0.1 

7 𝜎 0.5 18 𝜅 0.2 

8 𝑑𝑆 0.1 19 a 0.1 

9 𝑑𝑀𝑆 0.12 20 b 0.5 

10 𝑑𝑀 0.1 21 c 0.1 

11 𝜀 0.5    

The initial values used in obtaining the solution of the model are given below, 

𝑁(0) = 1000,200 < 𝑆(0) < 500,0 < 𝐼𝑆(0) < 200, 𝐼𝑀(0) = 150, 𝐼𝑀𝑆(0) = 150, 𝐿𝑆(0) = 100, 
50 < 𝑇(0) ≤ 100,𝑉(0) = 100and𝑅(0) = 10 
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Effect of Contact Rate on the Co-Infected Population 

 

DISCUSSION 

In line with the graphical results in section 4.0, it was observed that; 

Figure 4.1: Time series plot of the (a) Syphilis only model (b) measles only model (c) co-infection model and 

(d) co-infection model without recovered population. 

The time plot solution given in figure 4.2 shows that whenever the combined treatment rate 𝛼𝑀𝑆 of the syphilis 

and measles co-infected individuals increases, the number of co-infected individuals decreases. 

Figure 4.2: Time series plot of the co-infected population (a) with different treatment rate (b) with different 

vaccination rate. 

Similarly, whenever the vaccination rate is increased, i.e. more persons are added to the vaccinated 

compartment the co-infected compartment decreases. This is because more persons recover from the measles 

vaccine without contact with syphilis-infected individuals. 

Figure 4.3: Time series plot of the co-infected population (a) with different susceptible to syphilis contact rate 

(b) with different susceptible to measles contact rate (c) with different vaccinated to syphilis infected contact 

rate. 

Figure 4.3 shows that whenever there is greater contact between susceptible individuals and syphilis infected 

individuals, and susceptible individuals and measles infected individuals the co-infected compartment 
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increases in number. However, the contact rate between the measles vaccinated individuals and syphilis 

infected class does not affect the co-infected class as seen in figure 4.3(c). 

CONCLUSION 

In this paper, we formulated a mathematical model to study the transmission pattern of secondary syphilis and 

measles co-infection. Due to the introduction of immigration factor, the disease free equilibrium did not exist. 

Through analytical studies, we determined the endemic equilibrium point through which we established the 

stability of the secondary syphilis and measles sub-models and the coinfection model. 

We went further to numerically simulate the results of the proposed model and obtained the time series plots 

for each sub-model and the coinfection model. We observed that the numerical results agreed with our 

analytical findings.  

We also established the sensitivity of the parameters 𝛼𝑀𝑆, 𝜎, 𝜑𝑀 , 𝜑𝑆 and 𝜑𝑉  and observed while an increase in 

all parameters considered increased the co-infected class 𝜑𝑉 did not show any effect on co-infected class. 
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