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ABSTRACT 

Weak topology on a nonempty set X is defined as the smallest or weakest topology on X with respect to which 

a given (fixed) family of functions on X is continuous. Let 𝜏w be a weak topology generated on a nonempty set 

X by a family  

{fα:  α ∈ ∆} of functions, together with a corresponding family 

{(Xα, τα): α ∈ ∆} of topological spaces. If for some α0 ∈ ∆, 𝜏𝛼0  on 𝑋𝛼0  is not the indiscrete topology and 𝑓𝛼0  

meets certain requirements, then there exists another topology 𝜏𝑤1   on X such that 𝜏𝑤1  is strictly weaker than 𝜏w 

and fα is τw1-continuous, for all α ∈ ∆. Here in Part 2 of our Comparison Theorems for Weak Topologies, 

1. We showed that not every weak topology 𝜏w has a strictly weaker weak topology τw1. 

2. We constructed important examples to show (a) that a weak topological system may not have a strictly 

weaker weak topology, (b) that a weak topological system can have a strictly weaker weak topology, and (c) 

that a weak topological system can have both comparable and non-comparable weak topologies. 

3. A further research agenda is (now) set to find out when and why we must use a particular weak topology 

(instead of the others) in any given context of analysis.  

Key Words: Topology, Weak Topology, Weak Topological System, Product Topological System, Chain of 

Topologies, Strictly Weaker Weak Topologies, Pairwise Strictly Comparable Weak Topologies 
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MAIN RESULTS—EXAMPLES AND MORE GENERAL PROOFS 

CASE I—τw1 Does Not Exist for Every Weak Topology 𝜏w 

That is, not every weak topology has a strictly weaker weak topology. 

EXAMPLE 1: 

Let [(X, 𝜏𝑤),{(Xα,τα)}α∈∆,{fα}α∈∆] be a weak topological system in which each of the topological range spaces is 

an indiscrete space and each of the functions is onto. Then necessarily (X, 𝜏𝑤 ) is an indiscrete weak 

topological space; hence  𝜏𝑤  = {X, ∅}1 has no strictly weaker weak topology τw1.  

EXAMPLE 2: 

Let [(X, 𝜏𝑤),{(Xα,τα)}α∈∆,{fα}α∈∆] be a weak topological system in which each of the topological range spaces is  

 
1 This does not mean that the cardinality of such a weak topology is, in general, 2.  
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an indiscrete space. Let the domain of one of the functions (say f ) not be all of X, say the domain of fβ is a 

proper subset A of X. Then necessarily (X, 𝜏𝑤) is an indiscrete weak topological space; and  𝜏𝑤  = {X, ∅, A} has 

no strictly weaker weak topology 𝜏𝑤1
. 

It is worth pointing out that if the only thing different between examples 1 and 2 above is the function fβ, then 

the two weak topologies are comparable (as can easily be seen), but the two weak topological systems are, 

strictly speaking, totally different. Because of this fact, the two weak topologies are not comparable weak 

topologies, as the families of functions that generate them are different. However, in examples 3 and 4 below 

the families of functions are the same; hence the weak topologies in the two examples are comparable. 

CASE II—τw1 Exists for Many Weak Topologies τw 

Many weak topologies have strictly weaker weak topologies. In Corollary 2.1 of Comparison Theorems for 

Weak Topologies (1), it is proved that the usual weak and weak star topologies have chains of pairwise strictly 

comparable weaker weak or weak star topologies. (See [3]) Here we are set to fulfill the objective 2 of our 

abstract. 

EXAMPLE 3: 

Let X = {0,1}. The Sierpinski topology on X is the collection τ = {∅, X, {0}}. The Cartesian product of X with 

itself is the set 𝑋̅ = X×X = {(0,0), (0,1), (1,1),(1,0)} of 4 coordinate points. We can define the projection maps 

pi: 𝑋̅ → X; for i = 1,2 in the usual way by pi{(x, y)} = x if i = 1, and pi{(x,y)} = y if i = 2. Let us also endow 

each factor space X1 and X2 of 𝑋̅ with this Sierpinski topology. Then we have obtained all the conditions for a 

product topological system [(X, τw),{(Xα,τα)},{pα}] where the family of functions is made up of only two 

projection maps; and the product topology is the family  

τw = {∅, X, {(0,0),(0,1)},{(0,0),(1,0)},{(0,0)},{(0,0),(1,0),(0,1)}} 

of 6 subsets of 𝑋̅. 

EXAMPLE 4: 

Now let us endow only one factor space of X with the Sierpinski topology, and the remaining factor space with 

the indiscrete topology. The product (weak) topology that would now emerge on 𝑋̅ is seen to be 

τw1 = {∅, X, {(0,0),(1,0)}}, 

a family of only 3 subsets of 𝑋̅. It is also easily seen that τw1 is a strictly weaker weak topology than τw, on 𝑋̅. 

Yet both weak topologies are generated by the same fixed family of functions. One interesting question now 

is: Which of the two weak topologies of examples 3 and 4 (generated by the same family of functions) should 

be considered the weak topology generated by these functions, and why should we prefer to use one of them 

instead of the other in a context of analysis of this family of functions? 

EXAMPLE 5: 

The Euclidean (or usual) topology of the Cartesian plane R2 is known as the weak topology τw of the plane 

when its factor spaces R1, R2 (respectively the horizontal and the vertical axes) are themselves given their usual 

(Euclidean) topology, and the projection maps are the family of functions. 

If we endow any of the axes of the plane R2 with a topology strictly weaker than the usual topology of R the 

weak topology that would then be generated on the plane by the projection maps would be strictly weaker than 

(what may now be called) the usual weak topology of the plane. And only a second thought is all we need to 

see that virtually every topology on an axis of the Cartesian plane R2 has a strictly weaker topology—hence 

virtually every weak topology (including of course product topology) on the plane has a strictly weaker weak 

(or product) topology. This somewhat strong statement will find illustration in further examples and  
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propositions here. 

EXAMPLE 6: 

Let X = (a, b) ∈ U be a fixed open interval in the usual topology U of R. Let γ = {G ∈ U: G ⊂ X}. Then it is 

easy to see that γ is a topology on X. If we now let τ = γ∪{R}, we see that τ is a topology strictly weaker than U 

on R. If we have the two factor spaces of R2 endowed with the topology τ and have the projection maps as the 

family of functions on R2, the weak (product) topology now on the plane R2 would be strictly weaker than the 

usual weak topology of the plane. 

EXAMPLE 7: 

Let n ∈ N be a natural number, and let Xn = (−n, n) ∈ U, a U-open interval, where U is the usual topology on R. 

We can let τn be the topology induced on R by its U-open subset Xn following the process of construction in 

example 3 above. Then we observe the following. 

1. Each τn on R is strictly weaker than the usual topology U on R for all n ∈ N. Hence by endowing each factor 

space of R2 with τn we can obtain a strictly weaker weak topology (than the Euclidean topology) on R2, 

generated by the projection maps. 

2. If m > n then τn is strictly weaker than τm on R. Hence corresponding to any pair m, n of natural numbers 

there exists a pair τm and τn of strictly comparable and strictly weaker topologies than U on R. 

3. Hence corresponding to any pair m, n of natural numbers there exists a pair 𝜏𝑤𝑚  and 𝜏𝑤𝑛  of strictly 

comparable and strictly weaker weak topologies than the usual weak topology τw on R2. Hence 

4. There exists a chain {𝜏𝑤𝑛
}n∈N of pairwise strictly comparable and strictly weaker weak topologies than the 

usual weak topology τw on R2 in that 

𝜏𝑤1  < 𝜏𝑤2
 < 𝜏𝑤3   < ··· < τw 

5. As n → ∞, 𝜏𝑤𝑛
}→ 𝜏𝑤. 

6. And finally, any nonempty subset of the set R of real numbers can be used as the indexing set here in place 

of N and the subset-induced topologies can be constructed in many other ways than what is done here. 

Remark: 

1. The analysis above, particularly in example 4, copiously holds for any weak topology on any nonempty set 

which has a range (topological) space that in turn has a strictly weaker topology. And this scenario is a very 

fortuitous one as it tells us that we can seek and find a strictly weaker weak topology 𝜏𝑤1
, than w , provided 

w  is not an indiscrete weak topology; that we can further seek and find a strictly weaker weak topology 𝜏𝑤2
, 

than 𝜏𝑤1
, provided 𝜏𝑤1  is not an indiscrete weak topology; and so on. 

2. All the range (topological) spaces must not be endowed with only one type of topology in order to get a 

strictly weaker weak topology than a given weak topology. 

3. The expositions in the examples above can be extended to (particularly) general Euclidean topology of Rn—

and in general, to many weak topological systems. 

4. From the observations above it is clear that every pair of strictly comparable topologies in a range space of a 

weak topological system equally has correspondingly a pair of strictly comparable weaker weak topologies 

generated (if it can be so said) by them. This is a very important result which we state below in lemma 1.1. (In 

the following lemma, it is assumed that the function fr in the weak topological system meets the conditions of 

lemma 2.1 of Comparison Theorems for Weak Topologies (1).) 
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Lemma 1.1 Let [(X, w ),{(Xα,τα)}α∈∆, {fα}α∈∆] be a weak topological system. If in a range space, say (𝑋𝑟, 𝜏𝑟) 

there exist two strictly comparable topologies τr1 and τr2 where, say 𝜏𝑟1  < 𝜏𝑟2  (and both are strictly weaker than 

τr), then there exist two strictly comparable weaker weak topologies 𝜏𝑤1  and 𝜏𝑤2
 on X, in that  𝜏𝑤1  <  𝜏𝑤2  < w  

EXAMPLE 5: 

It is known that a finite product of discrete topological spaces is discrete. We add that if the cardinality of any 

of the factor spaces of a finite dimensional discrete product space is greater than 1, then such a discrete product 

topology has a strictly weaker product topology.  

The strictly weaker weak topologies obtained in respect of a given weak topology may not be pairwise strictly 

comparable; in fact they may not be comparable at all. The next example illustrates this. That is, if we look at 

the foregoing examples it may appear that all the strictly weaker weak topologies  𝜏𝑤𝑖  (when they exist) of a 

weak topology τw are always pairwise comparable. This is not actually so. 

Definition 1.1 Let 

, 

and let (R, U) denote R with its usual topology U. Let B = (a, b)−K, where (a, b) is an open interval of the set 

of real numbers with its usual topology. (We observe that (a, b)−K = (a, b), if  =Kba ),( ∅.) Then the K-

topology on the set R of real numbers is the collection 𝜏𝐾 = 𝑈 ∪ {(𝑎𝛼, 𝑏𝛼) − 𝐾}𝛼∈𝛥; the union of sets of type B 

together with U. 

EXAMPLE 6: 

We observe that the topology  𝜏𝐾1  on the set R of real numbers, given by the collection 
1K  = {R}⋃{(aα,bα) − 

K}α∈∆ of sets of type B together with R itself, is strictly weaker than the K-topology on R. Also, the K1-

topology and the usual topology on R are not comparable. To see this, we observe that (for instance) the U-

open interval (0,1) is not K1-open; and that the K1-open set 

 

is not U-open. 

Construction 1 (K-topology-induced weak topology) Suppose the Cartesian plane R2 has the projection 

maps defined on it, as usual, and that the factor spaces R1 and R2 (respectively horizontal and vertical) are 

each endowed with the K-topology. The K-topology-induced weak topology of R2 is the weak topology 

generated on R2 by the projection maps under this arrangement; i.e. where the factor spaces are given the K-

topology. 

We may want to know one or two things about the landscape of this topology. Suppose G = [(a, b)−K] ∈ KR is 

an arbitrary open set in the K-topology of R. Then two cases arise: namely, that either (a, b)⋂K = ∅ or (a, b)⋂K 

≠ ∅. 

Suppose, first, that (a, b)⋂K ≠ ∅. Then p−
1

1(G) = {𝑥̅ ∈ R2: p1(𝑥̅) ∈ G} = {𝑥̅ ∈ R2 : p1(𝑥̅) ∈ [(a, b) − K]} = 

{(x1,x2) ∈ R2 : x1 ∈ [(a, b) − K]} = {(x1,x2) ∈ R2 : x1 ∈ (a, b) and x1   K}. This is an open vertical infinite strip 

with deleted infinite vertical lines through the common points of (a, b) and K.   

If (a, b)⋂K = ∅, then  : x1 ∈ (a, b)}. This is the usual open 

vertical infinite strip, with no demarcations in it. 

In the same way, ) will either be an open horizontal infinite strip with deleted horizontal infinite lines or  
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the usual horizontal infinite strips, without demarcations. 

If, however, we replace K-topology by the K1-topology in the above construction— thereby having instead the 

K1-topology induced weak topology of R2—then by sketching the geometrical picture of the sub-basic and 

basic sets of this topology on R2 it will be found that the usual open rectangles, but not all, are open in this K1-

topology induced weak topology. Reason: Let (𝑎, 𝑏) = (0, 3
2⁄ ). Then the set 𝑝1

−1(𝑎, 𝑏) ∩ 𝑝2
−1(𝑎, 𝑏) would 

be an ordinary (or usual) plane rectangle in R2, hence open in the usual topology of R2, generated by the 

projection maps when the factor spaces of R2 are endowed with their own usual topologies of R. But this 

particular rectangle is not open in the K1-topology-induced weak topology of R2 since it cannot be expressed as 

the union of any number of open sets in the K1-topology-induced topology. Conversely the set B, as a set in the 

usual topology of R2 is not contained in any open set in the K1-topologyinduced topology; hence it is not open 

in this K1-topology-induced topology; though it is open in the K-topology induced weak topology. The reason 

for this is that the set B turns out to be what may be called a squared rectangle in the K1-topology-induced 

topology. 

Also this K1-topology-induced weak topology is not weaker than the usual Euclidean topology of the plane 

since the set (∗) above is not U − open. In summary of this example therefore, if we let 𝜏𝑤𝐾
, 𝜏𝑤𝐾1

 and 𝜏𝑤  

denote respectively the K-topology-induced weak topology, the K1-topology-induced weak topology and the 

usual weak topology of the Cartesian plane R2, then we see that  

• 𝜏𝑤< 𝜏𝑤𝐾
; 

• 𝜏𝑤𝐾1
 < 𝜏𝑤𝐾

 ; and that  

• 𝜏𝑤𝐾1
and 𝜏𝑤  are not comparable. 

NOTE: 

1. Let [(X, w ),{(Xα, τα)}α∈∆,{fα}α∈∆] be a weak topological system. If, for some r ∈ ∆, τr has two distinct 

strictly weaker topologies 𝜏𝑟1  and 𝜏𝑟2  then it is clear from the foregoing that we can get a strictly weaker 

weak topology 𝜏𝑤1
, than w , on X in at least two ways. 

2. The only weak topology which we know (for now) has no strictly weaker weak topologies is the 

indiscrete weak topology (whose range spaces are all indiscrete topological spaces). This implies that 

any non-indiscrete weak topology has a strictly weaker weak topology. The last assertion is clearly an 

important statement which needs to be proved. The proof of this will be given below in theorem 1.1. 

3. In terms of topological properties (like the separation axioms, compactness, etc.) there is now a 

challenge to identify or characterize the weak topologies whose strictly weaker weak topologies inherit 

their property; and it will equally be important and interesting to find those topological properties that 

are preserved under the operation of getting strictly weaker weak topologies. 

Lemma 1.2 Let τ and η be two topologies on a set X and let Sτ and Sη denote the subbases for τ and η 

respectively. Then Sτ ⊂ Sη ⇒ τ ≤ η. 

Proof: 

Let 

 

be the base for τ and let 
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be the base for η. If Sτ ⊂ Sη then clearly Bτ ⊂ Bη, and hence that τ = 

 

is a subfamily of 

. 

That is,   . 

■ 

Clearly the following result has many fundamental and far-reaching implications. 

Theorem 1.1 Let [(X, 𝜏w), {(Xα, τα)}α∈∆, {fα}α∈∆] be a weak topological system. If ∃ ( rX , r ), for some r ∈ ∆, ∋ 

Card( r ) > 2 then 𝜏w has a strictly weaker weak topology. 

Proof: 

Card( r ) > 2 implies that r  contains at least 3 subsets of rX . So, let r  = {∅, rX , G}, where G is a nonempty 

proper subset of rX . Then τr1 = r  − {G} is a topology on rX  strictly weaker than r . Let 𝜏𝑤1  be the weak 

topology generated on X by the fixed family of functions when rX  has the topology 𝜏𝑟1  and the remaining 

range spaces have their topologies unchanged. Then 𝜏𝑤1   is strictly weaker than 𝜏w since in particular

. The proof is complete. 

■ 

The meaning of theorem 1.1 is that a weak topology w   generated on a set X by a given family F of functions 

has a strictly weaker weak topology 𝜏𝑤1   on X generated by the same family F of functions provided one of its 

range spaces is not an indiscrete topological space. 

The theorem again has this very important implication which we state below as a corollary.  

Corollary 1.1 Every non-indiscrete weak topology on a nonempty set X is at the peak of a chain of pairwise 

strictly comparable weaker weak topologies. 

Note 

The cardinality of such a chain will depend on (a) the cardinality of X and (b) the creative way we choose to 

develop the chain. If X is a finite set, then the chain will necessarily be finite; and if X is infinite the chain can 

be made to be finite or infinite. The usual Euclidean topologies of Rn (n ≥ 2), as weak topologies, can have 

finite chain, denumerable chain, or uncountable chain of pairwise strictly comparable weaker weak topologies. 

Proposition 1.1 Let [(X, 𝜏w), {(Xα, τα)}α∈∆, {fα}α∈∆] be a weak topological system. If X is finite and 𝜏w is not 

indiscrete, then 𝜏w has a strictly weaker weak topology which makes X compact. 

Though proposition 1.1 is a simple result, its generalization or extension (neither of which is available now) 

will not be a negligible achievement since ’compactness’ is a very important issue in the whole of general 

topology. 

Proposition 1.2 Let [(X, 𝜏w), {(Xα, τα)}α∈∆, {fα}α∈∆] be a weak topological system. Let 
iw  denote the weak 

topology on X when Xα has the topology 
i

 . 
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Then 

1. 𝜏𝛼𝑖
≤ 𝜏𝛼𝑗

   𝜏𝑤𝑖
 ≤𝜏𝑤𝑗

 

2. 𝜏𝛼𝑖
and 𝜏𝛼𝑗

 not comparable, implies 𝜏𝑤𝑖
and 𝜏𝑤𝑗

 not comparable; 

3.  𝜏𝛼𝑖
< 𝜏𝛼𝑗

and 𝜏𝑟𝑖
> 𝜏𝑟𝑗

  implies 𝜏𝑤𝑖
and 𝜏𝑤𝑗

 not comparable; and  

4.  {𝜏𝛼𝑖
}, a chain, implies that {𝜏𝑤𝑖

} is a chain. 

Proof: 

1. Lemma 1.2 makes this easy to see. 

2. If 𝜏𝛼𝑖
and 𝜏𝛼𝑗  are not comparable, then the subbases of 𝜏𝑤𝑖

and 𝜏𝑤𝑗
 (and hence the topologies 𝜏𝑤𝑖

and 𝜏𝑤𝑗
) 

are not comparable. 

3. If 𝜏𝛼𝑖
< 𝜏𝛼𝑗

then from the foregoing, 𝜏𝑤𝑖  < 𝜏𝑤𝑗
. But then τri > τrj implies that 𝜏𝑤𝑖  > 𝜏𝑤𝑗

. That is, 𝜏𝑤𝑖  < 
jw  

and 𝜏𝑤𝑖  > 𝜏𝑤𝑗
. This is a contradiction; implying that 𝜏𝑤𝑖  and 𝜏𝑤𝑗  are not comparable. 

4. C = {𝜏𝛼𝑖
} being a chain implies that the topologies in C are pairwise comparable. Lemma 3.1 then 

implies that the family {𝜏𝑤𝑖
} of weak topologies on X is also in chain. 

EXAMPLE 1 

Let X = {a, b, c}, X1 = {x, y} and X2 = {p, q, r, s, t}. Let f1: X → X1 be a function defined by f1(a) = x, f1(b) = x 

and f1(c) = y. Let f2: X → X2 be a function defined by f2(b) = q and f2(c) = p. Let τ1 = {X1, ∅} be the topology on 

X1 and let τ2 = {X2, ∅} be the topology on X2. Then (X1, τ1) and (X2, τ2) are indiscrete topological spaces and the 

cardinality of each of the range topologies is 2. It can easily be verified that the weak topology τw on X 

generated by the family F = {f1, f2} of these two functions is τw = {∅, X, {b, c}}; a family of 3 subsets of X. 

EXAMPLE 2 

Let X = {a, b, c}, X1 = {x, y} and X2 = {p, q, r, s, t}. Let f1: X → X1 be a function defined by f1(a) = x and f1(b) = 

x. Let f2: X → X2 be a function defined by f2(b) = q and f2(c) = p. Let τ1 = {X1, ∅} be the topology on X1 and let 

τ2 = {X2, ∅} be the topology on X2. Then (X1, τ1) and (X2, τ2) are indiscrete topological spaces and the 

cardinality of each of the range topologies is 2. Now the weak topology τw on X generated by the family G = 

{f1, f2} of two functions is τw = {∅, {a, b, c}, {a, b}, {b, c}, {b}}; a family of 5 subsets of X. It is important to 

observe that the family F of functions in example 1 is different from the family G of functions in example 2. 

This observation will help us not to think that a fixed family of functions can generate two indiscrete weak 

topologies on the same set—as really a fixed family of functions cannot generate more than one indiscrete 

weak topology on a set. And the indiscrete weak topology of a family of functions must emerge only when all 

the range topologies are themselves indiscrete. 

An indiscrete weak topology may also emerge in the usual form (with cardinality 2) in which we have known 

indiscrete topologies. 

EXAMPLE 3 

Let X, X1 and X2 all be as given in example 2 above and let X1 and X2 retain their indiscrete topologies. If the 

domain of f1 is all of X and the domain of f2 is all of X, then the weak topology τw on X generated by these two 

functions will be τw = {∅, X}; with cardinality 2. So, when we say an indiscrete weak topology we only know 

or mean that it is one which has no strictly weaker weak topology; the matter of the determination of its  

cardinality is something else. 
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Proposition 1.3 An indiscrete weak topology can have cardinality greater than 2; however, it cannot have a 

strictly weaker weak topology in its own system. 

Since we have seen (from examples 1 and 2 above) that an indiscrete weak topology can have cardinality 

greater than 2, since such an indiscrete weak topology is also a topology in the ordinary sense and hence can 

further be reduced in some sense (though not as a weak topology), we have yet another very important 

exposition. 

Theorem 1.2 Let [(X, τw), {(Xα,τα)}α∈∆,{fα}α∈∆] be a weak topological system. The following statements are 

equivalent. 

(a) The weak topology τw is not reducible to a strictly weaker weak topology in any sense. 

(b) All the range topologies of τw, including any which may itself be a weak topology, have cardinality 2. 

(c) τw is an indiscrete weak topology. 

Proof: 

(a) If the weak topology τw is not reducible as a weak topology in any sense, then all the range topologies 

have cardinality 2; for if a range topology has cardinality greater than 2, theorem 3.5 would imply that 

τw has a strictly weaker weak topology. That is, (a) implies (b). 

(b) Clearly τw is an indiscrete weak topology if all the range topologies of τw have cardinality 2. 

(c) implies (a) by definition. 

SUMMARY AND CONCLUSION 

1. If all the range spaces are indiscrete topological spaces in the usual sense of having topologies of 

cardinality 2, it does not follow or mean that the weak topology—being then an indiscrete weak 

topology—would have cardinality equal to 2. 

2. If the topology of a range space of a weak topological system has cardinality greater than 2, then the 

weak topology has a strictly weaker weak topology. 

3. If there is a chain of pairwise comparable topologies in a range space of a weak topological system, 

then the weak topology of the system has correspondingly a chain of pairwise comparable weak 

topologies. 

4. An indiscrete weak topology may or may not have cardinality greater than 2. 

5. Clear examples are given at each stage to illustrate and demonstrate the developments/achievements 

being made. 
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