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Abstract: The characterization and quantification of stock 

market behaviour are important issues in financial risk 

management. This study analyzes the behaviour of Nigerian 

Stock Exchange (NSE) market returns over the period from 1985 

to 2017. The autoregressive conditional heteroscedasticity model 

(ARCH) with seven unusual parametric distributions for 

innovations including the Gaussian distribution, the Skewed 

Gaussian distribution, the Students t distribution, the 

Generalized error distribution, the Skewed generalized error 

distribution, the Standardized normal inverse Gaussian 

distribution and the Skewed Students t distribution was 

considered in the study. The models were fitted to the data using 

the maximum likelihood method. The ARCH model with the 

Student's t as the distribution for the innovation gave the best fit. 

The assessment of the general predictive ability of the best-fitting 

model was carried out on the basis of the value-at-risk and the 

expected miscalculations using some loss functions. 
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I. INTRODUCTION 

odeling financial time series is a complex problem.  

This  complexity  is  not  only  due  to  the  variety  of 

the series  in use (stocks,  exchange rates,  interest  rates,  

etc.),  to the importance of the frequency  of the observation 

(second, minute, hour, day, etc) or to the availability of very 

large data sets.  It is mainly due to the existence of statistical 

regularities (stylized facts) which are common to a large 

number of financial series and are difficult to reproduce 

artificially using stochastic models.  Most of these stylized 

facts were put forward in a paper by Mandelbrot (1963).  

Since then, they have been documented, and completed, by 

many empirical studies.   They  can  be  observed  more  or  

less  clearly  depending  on  the  nature  of  the series and its 

frequency.  The properties that we now present are mainly 

concerned with daily stock prices. 

Let tp denote  the  price  of  an  asset  or  stock  at  time  t  

and  let  1/log  ttt pp  be  the  continuously 

compounded  or  log  return  (also  simply  called  the  return).  

The series   t    is often close to the series of relative price 

variations    ttttt rpppr  1logsince/ ,11  .The 

following properties have been amply commented upon in the 

financial literature; Non – stationarity of price series, Fat – 

tailed distribution, leverage effect, volatility clustering and 

absence of autocorrelation for the price variations. 

Any satisfactory statistical model for daily returns must be 

able to capture the main stylized factsOf  particular  

importance  are  the  leptokurticity,  the  unpredictability  of  

returns,  and  the existence  of  positive  autocorrelations  in  

the  squared  and  absolute  returns.  Classical  formulations  

(such as  ARMA  models)  centered  on  the  second-order  

structure  are  inappropriate.   Indeed,  the  second-order 

structure  of  most  financial  time  series  is  close  to  that  of  

white  noise.   The fact that large absolute returns tend to be 

followed by large absolute returns (whatever the sign of the 

price variations) is hardly compatible with the assumption of 

constant conditional variance.  This phenomenon is called 

conditional heteroscedasticity. One of the classical models 

introduced in the econometric  literature  to account for the 

very specific nature  of  financial  series  (price  variations,  

log-returns,  interest  rates,  stock  indices,  etc)  is  the  

Autoregressive Conditional Heteroskedasticity (ARCH)-type 

of model. This class of models were first proposed by Engle 

(1982) (ARCH). Both ARCH(p) and its generalization have 

received a wide range of applications compared to other 

classes of volatility models such as the historical method, 

exponentially weighted moving average (EWMA), etc.  This 

is probably because of their ability to capture volatility 

clustering and leptokurtosis as well as track degrees of 

volatility variations over time. Also,  ARCH  models  can  be  

used  to  improve  the  modeling  and  prediction of  other  

simple  time  series models like ARMA and ARIMA models 

(Tsay, 2011). 

The motivation for this study was drawn from the fact that a 

lot of attention have been paid in the analysis of volatility 

associated with the Nigerian Stock Indices using ARCH 

model with Gaussian distribution, Student’s t distribution and 

generalized error distribution but the skewed version of these 

distribution are rarely applied. From both practical and 

economic perspectives, the study based on the empirical 

evidence will help the policy make and researchers to make 

informed evidence based decisions at the most appropriate 
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times as Nigerian Stock Markets evolves.Hence, the aim of 

this study is to characterize   the all share price index of the 

Nigerian Stock Exchange using the Autoregressive 

Conditional Heteroskedasticity class of model with seven 

uncommon distribution for innovation, Gaussian distribution, 

Skewed Gaussian, Student t distribution, Skewed student t 

distribution, Generalized error, the skewed generalized error 

distribution and standardized normal inverse Gaussian 

distribution. 

II. LITERATURE REVIEW 

Many research works have been carried out, which in one way 

or the other relate to this research; hence there is need to 

review some past studies concerning modelling volatility 

based on both NSE and other stock indices across the world. 

 Moffat and Akpan (2018) in their study examined the 

influence of excess   Kutorsis on the distributions of the 

innovations. They considered the presence of outliers in the 

data on daily closing prices of a share of Skye Bank, Sterling 

Bank, and Zenith Bank, starting from January 03, 2006, to 

November 24, 2006. The data consist of 2690 observations 

each obtained from the Nigerian Stock Exchange website. The 

result of their findings revealed that GARCH (1,1) Model 

under normal distribution, EGARCH (1,1) Model under a 

normal distribution and  EGARCH (1,1) Model under student 

t distribution fitted adequately to the returns of Skye Bank, 

Sterling Bank and Zenith  Bank respectively. 

Okonkwo  (2019) in their study examined the causal nexus 

between stock return volatility and selected macroeconomic 

variables in an emerging stock market from 1981 to 2017. The 

results of their findings showed that Johansen co-integration 

indicates the presence of a causal nexus between stock return 

volatility and selected macroeconomic variables in an 

emerging stock market in the long run. The Granger Causality 

Assessment Test revealed the index of industrial production 

and exchange rate as the statistically significant 

macroeconomic variables that influence stock return volatility 

to a high extent. The result on the significant effect of 

industrial productions and exchange rate lays credence to the 

existence of a positive and statistically significant relationship 

on stock return volatility. 

Based on these findings, they recommended that the monetary 

authority should continually work towards the stabilization of 

the exchange rate of Naira against other currencies of the 

world as this significantly impact on stock return volatility.  

Latha (2019)  in his work studied the volatility pattern of 

thirteen emerging economics which are predominately oil-

exporting countries using the time series consisting of 

monthly closing of price data from January 1st 2008 to 31st 

December 2018.  

The emerging markets are considered as investment 

destinations due to the presence of risk premium which has 

made the stock markets of these countries mere volatile. They 

employed both symmetric and asymmetric models of 

generalized autoregressive heteroscedastic models. From their 

findings, it was revealed that there was evidence of volatility 

clustering and leptokurtic in all the countries considered. The 

result of their study also showed that GARCH (1, 1) and 

TGARCH (1,1) were found to be the most appropriate model 

that fits symmetric and asymmetric volatility for the thirteen 

countries.  

Arum and Uche (2019) in their study investigated the 

volatility in equity prices of insurance stocks traded on the 

floor of the Nigerian Stock Exchange, using the time series 

data from 2011 to 2015 excluding weekend and public 

holidays. The result of their findings showed that GARCH 

(1,3)  and GARCH (1, 1) were the best models that captured 

the volatility that exists in the insurance stocks through the 

information criteria of Akaike, Bayesian, Shibata and Hanna 

Quinn. Their findings suggested that potential investors 

should invest in insurance stock as they show calm tranquillity 

and the future is relatively stable. 

III. MATERIALS AND METHODS 

3.1 Method of Data collection  

This study used secondary data which was obtained from the 

Central Bank of Nigeria Statistical Bulletin for various years. 

The data comprises of the Nigerian Stock Market Indices from 

1985 to 2017.   

3.2 Method of Data Analysis  

3.2.1 ARCH Model 

An ARCH model is composed of two components: the 

volatility component and the innovation component. The 

simplest and the most commonly used model for volatility is 

of order (1). The innovation is commonly assumed to come 

from the Gaussian distribution, the student’s distribution or 

some skewed extension of these distributions. 

ARCH (p) is a popular financial time series model for weakly 

stationary financial data. It can be specified by  

𝑋𝑡 = 𝜎𝑡𝑍𝑡                      (1) 

Where{𝑋𝑡} is the observed data, {𝜎𝑡} is the volatility process 

specified by 

𝜎𝑡
2 =∝0+∝1 𝑋𝑡−1

2 +∝2 𝑋𝑡−2
2 + ⋯ +∝𝑝 𝑋𝑡−𝑝

2       (2) 

And 𝑍𝑡  is an innovation process. 

Now, if ρ in equation (2) is equal to 1, then equations (1) & 

(2) reduce to ARCH(1) process with its evolution described 

by the following pair of equations.  

𝑋𝑡 = 𝜎𝑡𝑍𝑡          (3) 

𝜎𝑡
2 =∝0+∝1 𝑋𝑡−1

2          (4) 

Where 𝜎𝑡 > 𝑜 and 𝑍𝑡  is an iid process with 𝐸(𝑍𝑡) = 0 and 

var(𝑍𝑡) = 1. It is further assumed that (𝑍𝑡) is independent of 

the past of the process 𝑋𝑡 .  
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The fourth equation makes sense only when its right-hand side 

is positive. To ensure this for all values of 𝑋𝑡−1, it is necessary 

to assume that the ∝0> 0 and ∝1≥ 0. Since we assume that 

the process 𝑋𝑡  is stationary, its variance does not depend on t. 

Here, we will donate it by 𝜎2. Combining equations (3) and 

(4), we can write 𝑋𝑡  more explicitly:  

ttt ZXX 2

110    

3.2.1 ARCH (1) process is white noise  

𝐸 𝑋𝑡  = 𝐸 𝜎𝑡𝑍𝑡  

=E E 𝜎𝑡𝑧𝑡  𝐹𝑡−1   

= E 𝜎𝑡E 𝑧𝑡  F𝑡−1   (because 𝛿𝑡 ∈ 𝐹𝑡−1) 

= E 𝜎𝑡
 E  𝑧𝑡   (because 𝑍𝑡  is 

independent of 𝐹𝑡−1) 

= 0 

By stationary, 𝐸𝑋𝑡
2 is a constant. For 𝐾 ≥ 1we have  

E 𝑋𝑡𝑋𝑡−𝑘 = E 𝜎𝑡𝑍𝑡𝜎𝑡−𝑘𝑍𝑡−𝑘  

 =E E 𝜎𝑡𝑍𝑡𝜎𝑡−𝑘𝑍𝑡−𝑘  𝐹𝑡−1   

  =E 𝜎𝑡𝜎𝑡−𝑘𝑍𝑡−𝑘E 𝑧𝑡  𝐹𝑡−1   

 = E 𝜎𝑡𝜎𝑡−𝑘𝑍𝑡−𝑘E 𝑧𝑡  

 = 0. 

Hence  𝑋𝑡  is white noise. 

3.2.2 Variance of the ARCH (1) process 

From the equation of the ARCH (1) process we get 

E 𝑋𝑡
2  = E 𝜎𝑡

2𝑍𝑡
2  

 =E E 𝜎𝑡
2𝑧𝑡  F𝑡−1   

 =E 𝜎𝑡
2E 𝑍𝑡

2 F𝑡−1   (because 𝛿𝑡 ∈ 𝐹𝑡−1) 

 =E 𝜎𝑡
2E 𝑍𝑡

2  (because 𝑍𝑡  is independent of 𝐹𝑡−1) 

 =E(𝜎𝑡
2)   

 (becauseE (𝑍𝑡
2) = 1) 

 =∝0+∝1 E (𝑋𝑡−1
2 )(from the fourth equation of 

ARCH process) 

From the last equation we can see that  

E 𝑋𝑡
2 = ∝0+∝1 E 𝑋𝑡−1

2   

By the stationarity of 𝑋𝑡   we also have E 𝑋𝑡
2  = E 𝑋𝑡−1

2   = 𝜎2 

Hence  

 𝜎2 = ∝0+∝1 𝜎2. So 𝜎2 =
∝0

1−∝1
 

Since 𝜎2 > 0 and ∝0> 0. We must have ∝1< 1. 

 

3.2.3. Volatility of ARCH (1) 

The conditional variance of 𝑋𝑡 , given the information about 𝑋𝑠 

up to time 𝑡 − 1, is  

Var 𝑋𝑡 𝐹𝑡−1  =E 𝑋𝑡
2 F𝑡−1 , since E 𝑋𝑡  F𝑡−1  = 0 

  = E 𝜎𝑡
2𝑍𝑡  F𝑡−1  

  = 𝜎𝑡
2E 𝑍𝑡

2 𝐹𝑡−1   

  = 𝜎𝑡
2E 𝑧𝑡

2  

  = 𝜎𝑡
2 

The volatility is the conditional standard deviation of 

𝑋𝑡 , given the information about 𝑋𝑠  up to time 𝑡 − 1. The 

above calculation shows that volatility is equal to 𝜎𝑡 .  

Note that sometimes 𝜎𝑡
2 is also called volatility 

3.2.4. Kurtosis of ARCH (1) process 

E 𝑋𝑡
4 = E 𝜎𝑡

4𝑍𝑡
4  

 =E E 𝜎𝑡
4𝑧𝑡

4 F𝑡−1   

 = E 𝜎𝑡
4E 𝑧𝑡

4 𝐹𝑡−1   because 𝛿𝑡 ∈ 𝐹𝑡−1 

 = E 𝜎𝑡
4E(𝑍𝑡

4)  because 𝑍𝑡  is independent of 𝐹𝑡−1 

 = 𝜇4E(𝜎𝑡
4)       (where 𝜇4 = E(𝑍𝑡

4) )  

But  

E(𝜎𝑡
4) = E ∝0+∝1 𝑋𝑡−1

2  2 
= ∝0

2+ 2 ∝0∝1 E 𝑋𝑡−1
2  +

∝1
2  E (𝑋𝑡−1

4 ) 

 = ∝0
2+ 2 ∝0∝1 𝜎2 +∝1

2 E 𝑋𝑡−1
4   (by stationarity)  

 = ∝0
2+ 2 ∝0∝1 𝜎2 +∝1

2 𝜇4E(𝜎𝑡−1
4 ) 

It is not difficult to see that this expression relates E 𝜎𝑡
4  

toE 𝜎𝑡−1
4  . In particular, it is clear to that E 𝜎𝑡

4  may be 

changed over time, even though E 𝜎𝑡
2  is constant. Now if we 

assume that our process  𝑋𝑡  is stationary up to fourth order. 

In that caseE(𝑋𝑡
4) = E 𝑋𝑡−1

4  , which in turn implies 

thatE 𝜎𝑡
4 = E 𝜎𝑡−1

4  .  

Hence,  

E(𝜎𝑡
4) =∝0

2+ 2 ∝0∝1 𝜎2 +∝1
2 𝜇4E(𝜎𝑡

4) 

i.e. (1 −∝1
2 𝜇4) E(𝜎𝑡

4) =∝0
2+ 2 ∝0∝1 𝜎2. 

Solving for E(𝜎𝑡
4) gives:  

E 𝜎𝑡
4 =  ∝0

2+ 2 ∝0∝1 𝜎2 / 1 −∝1
2 𝜇4  

Hence, 

E(𝑋𝑡
4)    = 𝜇4E(𝜎𝑡

4) =
𝜇4 ∝0

2+ 2 ∝0∝1 𝜎2 

 1 −∝1
2 𝜇4 

 

= 
𝜇4 ∝0

2+2∝0∝1∝0/ 1−∝1  

 1−∝1
2𝜇4 

, since 𝜎2 =
∝0

1 −∝1
  

= 
𝜇4∝0

2 1+2∝1  / 1 − ∝1 

 1−∝1
2𝜇4 
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= 
𝜇4∝0

2 1+∝1 

 1−∝1
2𝜇4  1−∝1 

      (5) 

The above equation (5) needs to be positive. So in addition to 

the requirements that 

0 ≤∝1< 1, we also have  1 −∝1
2 𝜇4 > 0  i.e. ∝1

2< 1
𝜇4

 . If 

this inequality does not hold, then E 𝑋𝑡
4  does not exist.  

Consequently, to find the kurtosis of 𝑋𝑡 , we combine the 

obtained results so far, that is  

 22

4 )(

t

t
xt

EX

XE
K   

  
   2

014

2

1

2

11

2

04

11

11








  

=
  
 4

2

1

114

1

11








 

=
 

 4

2

1

2

14

1

1








 

Earlier, we noted that distributions with heavy tails have large 

kurtosis. The kurtosis of the normal distribution is equal to 3. 

The question now is for what values of  is 𝐾𝑥𝑡
 larger than 3. 

It is easy to check that  

 
 4

2

1

2

14

1

1








>3, if and only if 

4

42

1
2

3









  

If 𝜇4 ≥ 3 this inequality holds for any . In particular, if 𝑍𝑡  

has standard normal distribution, then 𝜇4 = 3 and the kurtosis 

of 𝑋𝑡  is greater than 3. The practical consequences of this is 

that if 𝜇4 > 3 the ARCH (1) process has heavy tails, which is 

a useful property for financial time series.  

3.2.5 Distribution for the innovation process 

For this work, we considered seven different distributions for 

𝑍𝑡 : the Gaussian distribution due to de Moivre (1738) and 

Gaussian distribution due to Azzalini (1986); the 

student’s𝑡distribution due to Gosset (1908); the skewed 

student’s 𝑡 distribution due to Fernandez and Steel (1998); the 

generalized error distribution due to Stubbotin (1923); the 

skewed generalized error distribution due to Theodossiou 

(1998) and the standardized normal inverse Gaussian 

distribution due to Barndoff-Nielsen (1977).  

Suppose, X, 𝑋2.  .  .   . 𝑋𝑛are independent observations 

representing the daily log returns of the stock, prices from 

NSE. Now, if we assume these observation to follow ARCH 

(1) process with the distribution of 𝑍𝑡  following any one of 

the seven distribution for innovation process with the 

probability density function𝑓 𝑥 . For each distribution for𝑍𝑡 , 

we give explicit expressions for 

E 𝑍𝑡 , E 𝑍𝑡
2 , E 𝑍𝑡

3 , E 𝑍𝑡
4 , vaRp  𝑍𝑡  and E𝑆 𝑝  𝑍 𝑡  .  

3.2.6. Gaussian distribution 

The probability density function for the Gaussian distribution 

is given by  

𝑓 𝛧 =
1

 2𝜋
 𝑒 −

𝑍2

2
 

If 𝑍 𝑡 and iid Gaussian random variable with mean 𝜇  and 

variance then  

E 𝑍𝑡 = 𝜇 

E 𝑍𝑡
2 = 𝜇2 + 1 

E 𝑍𝑡
3 = 𝜇3 + 3𝜇 

E 𝑍𝑡
4 = 𝑢4 + 6𝑢2 + 3 

𝑉𝑎R𝑝 𝑍𝑡 = 𝜇 + ɸ−1 𝑝  

E(S𝑝) 𝑍𝑡 = 𝑢𝑝 + ɸ ɸ−1 𝑝   

Where  ∅ ∙  is the pdf of a standard Gaussian random variable 

and ɸ ∙  is the CDF of a standard Gaussian random variable. 

Gaussian distribution is due to de moivre (1738) and Gauss 

(1809).  

3.2.7. Skewed Gaussian distribution 

The probability density function for the location-scale skewed 

Gaussian is given by 

f 𝑧𝑡 , 𝜇, 𝜎, ∝ =  
2

𝜎
 ∅  

𝑧𝑡 − 𝜇

𝜎
  𝛷  ∝

𝑧𝑡 − 𝜇

𝜎
  

where ∅ 𝑎𝑛𝑑 𝛷 denote as usual, the pdf and the cumulative 

distribution function (CDF) of the standard normal 

distribution, respectively. If 𝜇 = 0 and σ = 1, we obtain the 

standard skew-Gaussian distribution denoted by SN ∝ .  

If 𝑍𝑡  are independent and identical skewed Gaussian random 

variables with location parameter 𝜇 and skewness parameter 

∝ then  

E 𝑍𝑡 = 𝜇 +  
2

𝜋

∝

 1 +∝2
,  

E 𝑍𝑡
2 = 1 + 𝜇2 + 2𝜇 

2

𝜋

∝

 1 +∝2
 

E 𝑍𝑡
3 = 𝜇3 + 3𝜇2

∝

 1 +∝2
+ 3𝜇 +  

2

𝜋

∝  3 + 2 ∝2 

 1 +∝2 3
2 
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E 𝑍𝑡
4 = 𝜇4 + 6𝜇3

∝

 1 +∝2
+ 6𝜇2 + 4𝜇 

2

𝜋

∝  3 + 2 ∝2 

 1 +∝2 3
2 

+ 3 

E(𝑆𝑝) 𝑍𝑡 = 2  𝑥
𝑉𝑎𝑅

−∝

ф 𝑥 − 𝜇 𝛷 ∝  𝑥 − 𝜇  𝑑𝑥 

Where T h, a  is Owen’s function defined in Owen (1980). 

The skewed Gaussian distribution is due to Azzalini (1986). 

3.2.8. The Student 𝑡 Distribution 

The probability density function for the students 𝑡  is given by  

𝑓 𝑍𝑡 =  
Γ  

𝑣+1

2
 

 𝑣𝜋 Γ  
𝑣

2
 
 1 +  

𝑥𝑡
2

2
 

−
𝑣+1

2

 

Where 𝑣is the number of degrees of freedom and Γ is the 

gamma function. 

If 𝑍𝑡are independent and identical student’s 𝑡 random 

variables with location parameter 𝜇 and degrees of freedom 𝑣 

then 

E 𝑍𝑡 = 𝜇 

E 𝑍𝑡
2 = 𝜇2 +

𝑣

𝑣 − 2
 

E 𝑍𝑡
3 = 𝜇3 +

3𝑢𝑣

𝑣 − 2
 

E 𝑍𝑡
4 =  𝜇4 +

6𝑢2𝑣

𝑣 − 2
+

3𝑣2

 𝑣 − 2  𝑣 − 4 
 

𝑉𝑎𝑅𝑝 𝑍𝑡 = 𝜇 +  𝑣 𝑠𝑖𝑔𝑛  𝑃 − 1
2   

1

𝐼𝑎
−1  

𝑣

2
> 1

2  − 1
 

E(𝑆𝑝) 𝑍𝑡 = 𝜇𝑝 +
 𝑣Γ  𝑣 + 1 /2 

 1 − 𝑣  𝜋Γ 𝑣 2  
 1 +

 𝑉𝑎𝑅 − 𝜇 2

𝑣
 

1−𝑣

2
 

Where 𝑎 = 2𝑃 𝑖𝑓 𝑃 < 1
2 , 𝑎 = 2 1 − 𝑃  𝑖𝑓 𝑃 ≥ 1

2 , and 

I𝑥 𝑎, 𝑏 =  𝑡𝑎−1𝑥

0
 1 − 𝑡 b-1𝑑𝑡 B  𝑎, 𝑏  is the incomplete 

beta function ratio and B 𝑎, 𝑏 =  𝑡𝑎−11

0
 1 − 𝑡 b-1𝑑𝑡 is the 

beta function. The student’s 𝑡 distribution is due to Gosset 

(1908).  

3.2.9. The Skewed Students 𝑡 Distribution 

The probability distribution density function for the skewed 

student’s 𝑡 is given by  

F 𝑍𝑡 =
2

Υ +
1

Υ

Γ  
𝑣+1

2
 

Γ 𝑣 2   𝜋𝑣)
1

2  
 1

+
 𝑍𝑡 − 𝜇)2  

𝑣
  

1

Υ2
𝙸 𝑜,∞  𝑍𝑡 − 𝜇 

+ Υ2𝙸 −∞,0  𝑍𝑡 − 𝜇  ]−
 𝑣+1 

2
 

 

Or 

F 𝑧𝑡 
2Υ

 Υ2 + 1 

Γ 𝑣+1

2
 

Γ 𝑣 2   𝜋 𝑣
 1

+
 𝑧 − 𝜇)2  

𝑣
 

1

Υ2
𝙸 𝑧𝑡≥𝑢 

+ Υ2𝙸 𝑧𝑡 < 𝜇   −
𝑣+1

2  

Where 𝙸 ∙  is the indicator function. If 𝑍𝑡are independent and 

identical skewed student’s 𝑡 random variables with location 

parameter 𝜇, skewness parameter λ and degrees of freedom 𝑣 

then  

E 𝑍𝑡 =  𝜇 +
Γ  

 𝑣 − 1 
2

   Υ2 − Υ−2 

Γ 𝑣 2   Υ + Υ−1 

 

E zt
2 =  𝜇2 +

2𝜇Γ  
 𝑣 − 1 

2
   Υ2 − Υ−2 

Γ 𝑣 2   Υ + Υ−1 
 

+
 πv Γ  

 𝑣 − 2 
2

   Υ3 − Υ−3 

2Γ 𝑣 2   Υ + Υ−1 
 

 

E(zt
3) = 𝜇3 +

3𝜇 2Γ 
 𝑣−1 

2
   Υ2−Υ−2 

Γ 𝑣 2   Υ+Υ−1 
 +

3𝜇 πv Γ 
 𝑣−2 

2
   Υ3−Υ−3 

2Γ 𝑣 2   Υ+Υ−1 
 +

 
vΓ 

 𝑣−3 
2

   Υ4−Υ−4 

Γ 𝑣 2   Υ+Υ−1 
 

 

E (zt
4) = 𝜇4 +

4𝜇 3Γ 
 𝑣−1 

2
   Υ2−Υ−2 

Γ 𝑣 2   Υ+Υ−1 
 +  

6𝜇 2 πv Γ 
 𝑣−2 

2
   Υ3−Υ−3 

2Γ 𝑣 2   Υ+Υ−1 

 

 

 + 
6𝜇vΓ 

 𝑣−3 
2

   Υ4−Υ−4 

Γ 𝑣 2   Υ+Υ−1 
 +  

3𝑣
3

2  π Γ 
 𝑣−4 

2
   Υ5−Υ−5 

4Γ 𝑣 2   Υ+Υ−1 

 

 

 
 

 








































































































2

1
 ,1

2

1
,

2
1

2

1
 ,1

2

1
,

2
1

1

1

21

2

1

1

2

2

12 pif
v

v

pif
v

v

ZVaR

p

p

tp

 



International Journal of Research and Innovation in Applied Science (IJRIAS) | Volume VI, Issue III, March 2021|ISSN 2454-6194 

 

www.rsisinternational.org Page 54 
 

 

 

 

 

 






























































 































 




























VaRif
v

VaR

v
v

v
v

p

VaRif
v

VaR

V
V

V
V

p

ZSE

vt

tp

  ,1

2
1

2

1

 ,1

2
1

2

1

)(

22
2

21

2

2
2

222

2

Where      baBdtttbaI
b

x

a

x ,/1,
1

0

1     is the 

incomplete beta function ratio and 

    dtttbaB
ba 1

1

0

1 1,
    is the beta function. The skewed 
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3.2.9. Generalized Error Distribution 

The probability density function for the generalized error 

distribution is give 
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Where      adtttxaQ
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 /exp, 1
is the regularized 

complementary incomplete gamma function. 
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1 is the incomplete gamma 
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is the 

complementary incomplete gamma function. The generalized 

error distribution is due to Subbotin (1923). 

3.2.10. Skewed Generalized Error Distribution 

The probability density function for the skewed generalized 

error distribution is given by 
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     ,/31/2 kkkA  The skewed generalized 

error distribution is due to Theodossiou (1998). 

3.2.11. Standardized Normal Inverse Gaussian Distribution 

The probability density function for the standardized normal 

inverse Gaussian distribution is given by 
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Where  .1,22 K     is the modified bessel 

function of the second kind of order one and VARp  tZ is the 
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The normal inverse Gaussian distribution is due to Barndorff- 

Nielson (1977) 

Fitting the ARCH (1) model, previously discussed, the 

method of maximum likelihood was employed that is if it is 

assumed that ntX t ,....,1for  ,    are independent 

observations on X, then the parameters of ARCH (1) model 

are the values maximizing the likelihood 
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Where D is the distribution for innovating as discussed earlier, 

 k ...1  is log likelihood function of the parameter 

vector. 

Here and thereafter, 











k ,...,, 21 will be used to 

denote the maximum likelihood estimate of . The standard 

errors of 


 were computed by approximating the covariance 

matrix of θ by the inverse of observed information matrix i.e 
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

  

Discriminating among the fitted ARCH (1) model with 

respect to distributions for innovation was performed using 

different criteria. That is, the fit of the innovation distribution 

for the ARCH (1) model is compared in terms of the 

following criteria. 

TheAkaike information criterion due to Akaike (1974) defined 

by  

AIC = 2k – 2log L 






 

 ; 

the Bayesian information criterion due to Schwarz (1978) 

defined by 

BIC = k log n – 2 log L 






 

 ; 

The Hannan –Quinn criterion due to Hannan and Quinn 

(1979) defined by  

nLogLogKLHQC    2log2 











  

The smaller the values of these criterions the better the fit. 

Furthermore, various loss functions are employed to evaluate 

the selected model performances in terms of forecasting 

ability, and these include: the quasi-likelihood, defined by  

 















n

t

ttt SOSnQLike 2221 log  

 

the R
2
 Log, defined by  

;log

2

1

2212 























n

t

tt SnLogR   

the root mean squared error defined by 





















n

t

t SnRMSE
1

2

221 ˆ  

 

the mean squared error defined by 






















n

t

tt SnMSE
1

2

1 ;ˆ  

the mean absolute deviation defined by 




 
n

t

tt SnMAD
1

1 ˆ  

It is important to note that of those functions could be used to 

evaluate model forecasting ability.  

However, there is no specific measure that is universally 

considered best. Hence, it is better to use as much as possible. 

This is because some of these measures are so sensitive to 

outlier’s e.g MAD. 

 

IV. DATA ANALYSIS AND RESULT 

Time series analysis is performed on the share price index of 

the NSE using the Autoregressive conditional 

heteroskedasticity (ARCH) with seven different distributions 

for the innovations.  The distributions for the innovations 

include: the Gaussian distribution, the Skewed Gaussian 

distribution, the Students t distribution, the Generalized error 

distribution, the Skewed generalized error distribution, the 

Standardized  normal  inverse Gaussian  distribution,  the  

Skewed Students t distribution.  The models are fitted on the 

data from the year 1985 to 2017, then the forecast accuracy 

will be done in terms of the two most widely used risk 

measures, the value at risk and expected shortfall.   The 

flexibility and performanceof these distributionsfor innovation 

aredone using some selected criteria: the Akaike information 

criterion of Akaike (AIC), the Bayesian information criterion 

of Schwarz (BIC), the Hannan Quinn criterion (HQC). 

Table 1:  Descriptive statistics for monthly log returns for the period 1985-

2017 for all share price index of the NSE. 

 Statistics NSE 

Daily log returns 

n 395 

Min −0.365882 

Q1 −0.011696 

Median 0.015991 

Mean 0.014784 

Q3 0.042945 

Max 0.323515 

SD 0.061484 

CV 4.15882 

Skewness −0.509779 

Kurtosis 6.833218 

IQR 0.054641 

  

Range 0.689397 

Variance 0.003780 

 

4.1    Descriptive Analysis of the Data Set 
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Figure1:  Histogram of log returns for indices of the NSE with kernel density (left) and a normal (right) curve superimposed to the data. 

 

 

 

 

 

 

 

                            Histogram of logreturns                                  Histogram of logreturns 

Following common practice, the data were transformed by 

taking logarithms and then first-order differences.  The 

histograms of the transformed data set are shown in Figure 1. 

Each histogram appears more or less symmetric about zero.  

Note that the histograms are the same but with different 

curves superimposed. The one on the left-hand side bears a 

kernel plot on top of the histogram.  A kernel plot produces a 

smooth curved without assuming normality.  Generally, in 

statistics, kernel density estimation is a non-parametric way to 

estimate the probability density function of a random variable.  

It is usually a much more effective way to view the 

distribution of a variable when compared to the normal 

distribution.  Then, the one on the right-hand side has a 

normal curve over it.  The following summary statistics for 

the daily log returns are computed and given in Table 1, the 

number of observations (n), the minimum (Min), first quartile 

(Q1), median, mean, third quartile(Q3), the maximum (Max), 

standard deviation, coefficient of variation (CV), skewness,  

kurtosis, interquartile range (IQR), range and variance. The 

minimum value for our data set is negative.  The first quartile 

value for our data set is also negative. The median and mean 

values are positive but close to zero,  which is evidence of the 

stock booming within the period of study.   The maximum is a 

positive value.  The coefficient of variation is relatively high.  

It is important to note that the coefficient of variation is one of 

the statistics that allows investors to determine how much 

volatility, or risk, is assumed in comparison to the amount of 

return expected from investments.  Of course the lower the 

ratio of the standard deviation to mean return, the better risk-

return trade-off.  The data is negatively skewed and is less 

than zero.  

The kurtosis value is significantly greater than three, the 

kurtosis value corresponding to the normal distribution. With 

both the skewness and kurtosis values, we note that our data is 

not normally distributed.  This confirms that the data is heavy-

tailed.  Normality of stock price returns was tested using the 

Anderson-Darling test (Anderson and Darling, 1954), the 

Cramer-von Mises test, the Kolmogorov-Smirnov test, the 

Pearson chi-square test, the Jarque-Bera test (Jarque and Bera, 

1980) and the data-driven smooth test.  None of the tests for 

the data set on the stock price returns followed the normal 

distribution.  This is not surprising as financial data are 

generally known to exhibit heavy tails, time-varying volatility, 

and long-range dependence with significant kurtosis and 

asymmetry. 

 

Figure 2:  Plots of the daily prices of the NSE shares 
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Figure 3:  Plots of the daily log returns and squared log returns of the NSE shares. 

Plot of the daily log returns of the NSE shares.            Plot of the daily log returns^2 of the NSE shares  

Figure 4:  Autocorrelations of the NSE returns and Autocorrelations of the squared NSE returns. 

 

 

 

 

 

 

 

 

 

 

 

       Autocorrelations of the NSE returns                          Autocorrelations of the squared returns  

 

Notably, the plot of daily prices of the NSE share in Figure 2 

appears not to be stationary.  That is the  samples  paths  of  

the  prices  are  generally  close  to  a  random  walk  without  

intercept.   On the other hand, the plots of returns and squared 

returns are given in Figure3 and are generally compatible with 

the second-order stationarity assumption.  For instance, it 

shows that the returns of the NSE index oscillate around zero, 

with no visible trend.   The  oscillations  vary  a  great  deal  in  

magnitude,  but  are  almost constant in average over long 

subperiods.  The extreme volatility of prices, induced by the 

financial crisis of 1987 and 2008, are worth noting. 

Figure 4 gives the autocorrelation function of the returns and 

squared returns.  The ACF of the returns does  not  appear  to  

be  significantly  non-zero  anywhere  (other  than  at  lag  1  

of  course).  In  other  words, there  is  weak  or  no  serial  

correlation  of  the  returns.   On the other hand, the second 

chart which gives the  ACF  of  squared  returns  does  appear  

to  be  significantly  non-zero  at  certain  lags(e.g  at  lag  4).   

So this gives us hope that we can use these squared returns to 

predict something (volatility) by using them. Interestingly,  if  

we  plot  the  ACF  for  absolute  returns,  we  would  find  

something  similar  to  the  ACF  of squared  returns.  This  is  

because  the  absolute  value  and  the  squared  both  discard  

the  sign  to measure some sort of “deviation”.  And in 

general,  the intuition behind looking at the square of the 

series when we  are  searching  for  the  “ARCH”  effect  is  

unravelled.  This is because we can now use them to predict 

“volatility” (i.e.  the conditional variance) using ARCH 

models.  And this is what ARCH models do. 

The  ARCH  model  in  presented in section 3.2.1  were  fitted  

to  log  returns  from  NSE  share  indices.   We considered 

seven distributions for the innovation.  So, the ARCH model 

with their respective innovations were fitted to log returns. 

The method of maximum likelihood was used.  The log-

likelihood values, the AIC values, the BIC values and the 

HQC values for the fitted models are given in Tables 2 to 8. 
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Table 2:  Returns from NSE shares:  Model 1 with innovation as normal. 

Distribution for 
Zt:Normal 

 

Let Xt be our time series. The fitted model is 

Xt=0.0182951+t 
t=σtZt 

Zt=N(0,1) 

t=0.0018205+0.8764411Xt−1 




 

0.0182951(0.0025300),p-value=4.78×10−13 



  
0.0018205(0.0002255)p-value=6.66×10−16 




 

0.8764411(0.1782579)p-value=8.80×10−07 

Log-

likelihood&criter
ia 

-

566.3567,AIC=−2.852439,BIC=−2.822219,HQC=−2.84
0466 

Jarque-BeraTest p-value=0 

Shapiro-

WilkTest 
p-value=1.20×10−14 

Ljung-BoxTest p-value=0.571607 

Ljung-BoxTest 

R2 
p-value=0.575411 

LMArchTest p-value=0.7249127 

 

Table 3:  Returns from NSE shares:  Model 1 with innovation as Skewed 

normal. 

Distribution for 
Zt: Skewed 

Normal 

 

Let Xt be our time series. The fitted model is 

Xt=0.0172345 + t 

t=σtZt 
Zt= SN(0,1) 

t=0.0018042+0.809729Xt−1 




 

0.0172345(0.0026305),p-value= 5.69×10−11 



  
0.0018042(0.0002261)p-value=1.55×10−15 



1  

0.8709729(0.1783902)p-value=1.05×10−06 



  
0.9276077(0.0459791) p-value=2.00 ×  10−16 

Log-likelihood 
& criteria 

-567.5182, AIC = −2.853256, BIC = −2.812964,HQC = 
−2.837292 

Jarque-

BeraTest 
p-value=0 

Shapiro-
WilkTest 

p-value=1.04×10−14 

Ljung-BoxTest p-value=0.554252 

Ljung-BoxTest 

R2 
p-value=0.2931929 

LMArchTest p-value=0.472741 

 

Table 4:  Returns from NSE shares:  Model 1 with innovation as Student’s t. 

Distribution for Zt:  
Student’ t 

Let Xt be our time series. The fitted model is 
Xt=0.0163458 + t 

t=σtZt 

Zt=t(0,1) 
t=0.0017359+1.0000000Xt−1 




 

0.01363458(0.0021833),p-value= 7.06×10−14 



  
0.0017359(0.0004204)p-value=3.64×10−05 



1  

1.0000000(0.3052518)p-value=0.00510 



  
3.3137649(0.5322359) p-value=4.78 ×  10−10 

Log-

likelihood&criteria 

-615.6642, AIC = −3.097034, BIC = 

−3.056742,HQC = −3.081070 

Jarque-BeraTest p-value=0 

Shapiro-WilkTest p-value= 7.56×10−15 

Ljung-BoxTest p-value=0.684248 

Ljung-BoxTest R2 p-value=0.29296983 

LMArchTest p-value=0.212483 

 

Table 5:  Returns from NSE shares:  Model 1 with innovation as skewed 
Student’s t. 

Distribution for Zt:  

skewed Student’t 

Let Xt be our time series. The fitted model is 

Xt=0.018501 + t 

t=σtZt 
Zt= Sst(0,1) 

t=0.001745+1.0000000Xt−1 




 

0.0185011(0.0028756),p-value= 1.24 × 10−10 



  
0.0017450(0.0004258) p-value=4.16 × 10−05 



1  

1.0000000(0.3015904) p-value=0.000914 



v  
3.2971615(0.5145715) p-value=1.48 × 10−10 



  
1.0911472(0.0826959) p-value=2.00 × 10−16 

Log-likelihood&criteria 
- 615.6642, AIC = −3.095378, BIC = 

−3.045013,HQC = −3.075423 

Jarque-BeraTest p-value=0 

Shapiro-WilkTest p-value= 1.04×10−14 

Ljung-BoxTest p-value=0.1130496 

Ljung-BoxTest R2 p-value=0.9839326 

LMArchTest p-value=0.53627 

 

Table 6:  Returns from NSE shares:  Model 1 with innovation as GED. 

Distribution for Zt:  
GED 

LetXt beourtimeseries.Thefittedmodelis 
Xt=0.0203914 + t 

t=σtZt 

Zt=GED(0,1) 
t=0.0002088+ 0.5637341Xt−1 




 

0.0239(0.002353),p-value= 2.00 × 10−16 



  
0.000288(0.00009332) p-value=0.0253 



1  

0.5637(0.1276) p-value=9.91 × 10−06 



  
1.265(0.1355) p-value=2.00 × 10−16 

Log-

likelihood&criteria 

-577.6642, AIC = −2.095378, BIC = −2.045013, 

HQC = −2.075423 
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Jarque-BeraTest p-value=0 

Shapiro-WilkTest p-value= 1.95×10−06 

Ljung-BoxTest p-value=0.687861 

Ljung-BoxTest R2 p-value=0.5242079 

LMArchTest p-value=0.2899992 

 

Table 7:  Returns from NSE shares:  Model 1 with innovation as skewed 
GED. 

Distribution for Zt:  skewed 

GED 

Let Xt beourtimeseries.The fitted model 

is 
Xt=0.02448864 + t 

t=σtZt 

Zt=SGED(0,1) 
t=0.0001421604+ 0.6506868433Xt−1 




 

0.02449(0.002272),p-value= 2.0× 10−16 



  
0.0001422(0.00007223) p-value=0.049 



1  

0.6507(0.1373) p-value=2.14 × 10−06 



a  
1.192(0.1236) p-value=2.0× 10−06 



  
1.266(0.0602) p-value=2.00 × 10−16 

Log-likelihood&criteria 
-- 531.2661, AIC = −2.165905, BIC = 

−2.105466, HQC = −2.141958 

Jarque-BeraTest p-value=0 

Shapiro-WilkTest p-value= 3.355 ×10−06 

Ljung-BoxTest p-value=0.1529313 

Ljung-BoxTest R2 p-value=0.2714512 

LMArchTest p-value=0.24475478 

 

Table 8:  Returns from NSE shares:  Model 1 with innovation as standardized 

NIG. 

Distribution for Zt:  

SNIG 

 

LetXt beourtimeseries.Thefittedmodelis 
Xt=0.02436185 + t 

t=σtZt 

Zt=SNIG(0,1) 
t=0.00016738+ 0.68368297Xt−1 




 

0.02436(0.002206),p-value= 2.0 × 10−16 



  
0.0001674(0.00008429) p-value=0.047063 



1  

0.6837(0.1629) p-value=2.70 × 10−05 



a  
1.045(0.4070) p-value=0.010217 



  
0.3516(0.09373) p-value=0.000176 

Log-likelihood&criteria 
- 530.1106, AIC = −2.160054, BIC = −2.099615, 

HQC = −2.136107 

Jarque-BeraTest p-value=0 

Shapiro-WilkTest p-value= 3.605723 ×10−06 

Ljung-BoxTest p-value=0.1508468 

Ljung-BoxTest R2 p-value=0.2800082 

LMArchTest p-value=0.238415 

 

From the result obtained in Tables 2 - 8, we observe that the 

ARCH parameters are highly statistically significant 

(extremely small p-values) for all the  distributions.   Each  

parameter  has  a  p-value  of  less  than  0.05  and  so  is  

statistically  significant  at  5%  significance  level.   Both, 

Jarque-Bera tests and Shapiro-Wilk tests strongly suggest that 

the residuals are non-Gaussian for all distributions.  The 

Ljung-Box of the residuals supports the hypothesis that they 

are uncorrelated (or weak dependence).  The Ljung-Box of the 

squared residuals supports the hypothesis that they are 

uncorrelated, as well.   The  LM  Arch  tests  indicates  that  

there is no ARCH effect in the residuals,  that is each 

model(distribution)  explains  any ARCH effects present in  

the  data.   So  comparing  the  performance  of  these  

distributions,  it  can  be  observed  that  the  ARCH model 

with the Student’s t as the distribution for the innovation gives 

the smallest values for the negative log-likelihood,  the  AIC,  

the  BIC,  and  the  HQC.  For the best performing model, 

estimate of the shape parameter is 3.31376.  It represents the 

degrees of freedom of the estimated standardized t-

distribution. The t-distributions have heavier tails than the 

normal distribution, especially for small number of degrees of 

freedom.  The estimate 3.31376 suggests that the tails are 

indeed heavier than that of the normal distribution.  For 

example, moments of order higher than 3 do not exist for t-

distributions with less than 4 degrees of freedom.  

To access the forecasting ability of these models, we 

employed different loss functions and compared their 

observed values with their corresponding fitted values in 

terms of two most widely used risk measures, value at risk 

and expected short fall.   

 

Table 9:  Loss function as overall model evaluation criteria for predictive ability of the NSE share indices 

Log returns of NSE share indices 

Loss function Model 
VaR0.95,wl=5

0 

ES.95,wl=5
0 

VaR.95,wl=10
0 

ES.95,wl=1
00 

VaR.95,wl=15
0 

ES.95,wl=1
50 

 ARCH NORM 1.441×10−1 - 1.380×10−1 - 1.858x10-1 - 

 ARCH SNORM      - 

 
ARCH STD 

 
1.609×10−1 - 1.509×10−1 - 1.973×10−1 - 
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 ARCH SSTD 3.692×10−3 489.58 3.225×10−1 0.0004 3.400×10−3 239.93 

 
ARCH GED 

 1.586×10−1 9363.288 1.500×10−1 10783.53 1.619×10−1 12239.01 

 
ARCH SGED 
ARCH SNIG 

1.990×10−1 - 1.579×10−1 - 1.579×10−1 - 

QLIKE 1.476×10−1 9224.826 1.395×10−1 10602.8 1.886×10−1 12037.74 

 1.601×10−1 - 1.447×10−1 - 1.941×10−1 - 

 ARCH NORM 3.258×10−1 - 3.230×10−1 - 4.292×10−1 - 

 ARCH SNORM 3.694×10−1 - 3.531×10−1 - 4.582×10−1 - 

 ARCH STD 8.232×10−3 392.93 6.475×10−4 472.73 6.455×10−1 216.06 

 ARCH SSTD 3.391×10−1 57009.21 3.228×10−1 72251 4.237×10−1 76337.82 

 ARCH GED 4.389×10−1 - 3.389×10−1 - 3.700×10−1 - 

R2LOG ARCH SGED 3.108×10−1 56073.26 2.992×10−1 70876.93 3.943×10−1 74655.99 

 ARCH SNIG 3.388×10−1 - 3.011×10−1 - 3.857×10−1 - 

 ARCH NORM 8.551×10−3 2.293×10−1 8.862×10−3 1.952×10−1 1.057×10−2 1.777×10−1 

 ARCH SNORM 8.885×10−3 2.293×10−1 9.174×10−3 1.951×10−1 1.086×10−2 1.777×10−1 

 ARCH STD 1.064×10−5 1.962×10−3 9.749×10−5 1.943×10−6 9.706×10−4 1.990×10−3 

 ARCH SSTD 8.171×10−3 3.019×10−1 8.277×10−3 3.013×10−1 9.954×10−3 3.033×10−1 

 ARCH GED 8.329×10−3 2.297×10−1 7.595×10−3 1.959×10−1 8.727×10−3 1.778×10−1 

RMSE ARCH SGED 7.680×10−3 2.938×10−1 7.776×10−3 1.895×10−1 9.395×10−3 1.898×10−1 

 ARCH SNIG 7.248×10−3 2.278×10−1 7.169×10−3 1.987×10−1 8.714×10−3 1.764×10−1 

 ARCH NORM 5.654×10−3 11.409 5.650×10−3 9.555 6.508×10−3 8.585 

 ARCH SNORM 5.965×10−3 11.400 5.913×10−3 9.546 6.758×10−3 8.589 

 ARCH STD 7.987×10−5 11.978 7.241×10−5 9.926 7.506×10−5 3.217 

 ARCH SSTD 5.451×10−3 18.489 5.400×10−3 18.870 6.262×10−3 18.653 

 ARCH GED 5.874×10−3 11.479 5.256×10−3 9.625 5.572×10−3 8.611 

MAD ARCH SGED 5.170×10−3 17.949 5.069×10−3 9.885 5.936×10−3 9.985 

 ARCH SNIG 5.171×10−3 11.454 4.909×10−3 9.555 5.774×10−3 8.432 

 ARCH NORM 7.312×10−5 5.261×10−2 7.855×10−5 3.812×10−2 1.118×10−4 3.159×10−2 

 ARCH SNORM 7.895×10−5 5.259×10−2 8.417×10−5 3.809×10−2 1.181×10−4 3.159×10−2 

 ARCH STD 1.132×10−6 3.852×10−5 9.505×10−5 3.382×10−5 9.422×10−6 3.664×10−7 

 ARCH SSTD 6.677×10−5 9.119×10−2 6.851×10−5 9.083×10−2 9.908×10−5 9.203×10−2 

 ARCH GED 6.938×10−5 5.279×10−2 5.768×10−5 3.837×10−2 7.971×10−5 3.162×10−2 

MSE ARCH SGED 5.899×10−5 8.633×10−2 6.047×10−5 8.383×10−2 8.826×10−5 8.403×10−2 

 ARCH SNIG 5.253×10−5 5.289×10−2 5.140×10−5 3.754×10−2 7.558×10−5 3.114×10−2 

 

Table 9 shows that the ARCH STD model provides the 

smallest values for all loss functions at p = 0.05 in different 

window periods w = 50; 100; 150. Therefore, we conclude 

that ARCH STD is the best model for characterizing NSE 

equity indices in terms of performance and predictive ability. 

V. CONCLUSION 

This study used the ARCH model with seven distributions for 

innovation as a tool to characterize NSE and provide an 

accurate prediction for the series. 

The findings of the present study show that the ARCH model 

the Student's t-distribution yields lower values for AIC, BIC, 

and HQC. We, therefore, conclude that the ARCH model with 

Student's t-distribution outperforms other distributions in 

terms of performance and predictability. Hence, the study 

recommends carrying out future work with the artificial neural 

network and comparing the approach with the one used in the 

present study. 
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