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Abstract: This paper focuses on the study of some properties of
cosets in split extensions of hypercomplex numbers. It is well
known that if G is a group and H its subgroup, the cosets of the
subgroup H form a partition of the group G. However, this
property does not generally hold for loops. This study aims at
constructing cyclic subloops of the split extensions of
hypercomplex numbers and the corresponding cosets arising
from them. It is then shown that the cosets of a cyclic subloop
form a partition of the split extension loop i.e. any two right or
left cosets of a cyclic subloop are either disjoint or identical. The
study uses the Cayley-Dickson and Jonathan Smith doubling
processes to construct multiplication tables for the split
extensions of hypercomplex numbers. Nim addition is also used
to give a general way of generating cyclic subloops and the cosets
arising from them. In Loop Theory, only when § is a normal
subloop of Lwill the left and right cosets of S coincide, these
cosets form a loopL/Scalled the quotient or factor loop whose
multiplication is defined by (a-S)-(b-S)=(a-b)-S,Vabe
L. In this workwe use cyclic normal subloops of split extensions
of hypercomplex numbers to construct quotient loops, and show
that the multiplication of the elements in the quotient loop
formed can also be carried out by considering the Nim addition
of the subscripts of the individual elements. The complex split
extension forms a group and hence it remains trivial to work on
the same. Though the authors have also carried out the same
process on the sedenion split extensions, the present paper
focusesmainly on the quaternion and octonion split extension.
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I. INTRODUCTION

In Mathematics, a coset is a set made of all the products
obtained from multiplication of every element of a
subgroup H in turn by one element of the group G that contain
the subgroup H. Multiplication of an element of a group by
the subgroup from the left gives rise to a left coset while
multiplication from the right gives rise to a right coset. A
coset may not necessarily be a subgroup of the group.

Cosets form the basis of this study. They play a very crucial
role in proofs of some of the most basic results in Group
Theory, for instance, in the proof of the Lagrange’s
Theorem(Kinyon M, Pula K and Vojtechovsky P, 2012). They
are also used in construction of quotient loops. Recently,
Mathematicians have focused their attention on the study of
cosets in Loop Theory. Michael Kinyon, Kyle Pula and Petr
Vojtechovsky studied the properties of cosets in
Antiautomorphic loops and Bol loops(Kinyon M, Pula K and

Vojtechovsky P, 2012). They showed that any two left cosets
of a subloop S of a left automorphic Moufang loop were either
disjoint or intersect in a set whose number of elements equals
that of some subloop of S.Ales Drapal and Terry Griggs gave
a complete answer tothe question of when the cosets of a
Steiner subloop Spartition the loop(Drapal A., Griggs T. S,
2016). They concluded that this happens if and only if the
Steiner loop can be formed by a union of subloops of
order2|S|, any two of which intersect in S.

The Cayley-Dickson doubling Process

The Cayley- Dickson doubling process starting from real
numbers successively yields the complex numbers of
dimension 2, quaternions of dimension 4, octonions of
dimension 8, and sedenions of dimension 16(Smith, W. D,
2004). Each algebra contains the previous one as a sub
algebra. Different doubling processes for obtaining sedenions
from octonions and general 2*-ons from 2" !-ons have been
developed.

A complex number can be written in the form (a,b)
wherea, b € R. Doubling complex numbers by using the
Cayley-Dickson process gives rise to a 2° — dimensional
quaternion algebra. The multiplication is defined as follows:

(a,b)(c,d) = (ac — bd, bé + ad)
1)

The 22 — dimensional quaternion algebraH has a basis 1, i, j
and k. Therefore, if q € H, it can be written as,q = a + bi +
cj + dk, where a,b,c,d € R.

The multiplication for quaternions can be expressed as a rule
i.ei?=j?=k?=ijk =—1which implies that, ij = k, jk =
i,ki=j,ji=—kkj=—iik=—j.

Next we have the 23-dimensional octonions algebra obtained
by forming pairs (a, b) where a,b € H and multiplication
carried out as in complex numbers. In general, this process
continues giving rise to 2"-dimensional hypercomplex
numbers from a pair of 2"l-dimensional hypercomplex
numbers.

Multiplication of the split extension elements

The elements of L x S° are encoded as pairs (a, b)witha € L
andb € S° = {1,—1}. The multiplication of these elements
will be done using the Jonathan Smith formula (Smith, J. D.
H, 1995) given below:
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i. (x, Dy, =(xy, 1)
ii. e, Dy, -1 = (yx,—-1)
iii. e, -, 1) = (xy,—-1)
iV' (x! _1)(3’, _1) = (—xj_/, 1) (2)

Il. PRELIMINARIES
Definition 1: Groupoid

A groupoid (Q, -) is a non-empty set Q which is closed under
the binary operation( - ) i.e.

Vx,y€EQ3IzeQsuchthatx -y = z.
Definition 2: Quasigroup

A quasigroup is a groupoid (@, -) such that ¥ a,b € Q the
equations ax = b, and ya = b have unique solutions x,y € Q
respectively.

Definition 3: Loop

A Loop is a quasigroup (Q, -) with a neutral element e € Q
such that ex = xe = x Vx € Q. A loop with the associative
property forms a group i.e. in Loop Theory a group is simply
an associative loop.

Definition 4: Subloop

A subloop is a non-empty subset S < (Q, -) denoted by
S < Q such that(S, -) is a loop in its own right.

Definition 5: Left coset

For a loop @, a subloop S < @, and x € Q, then the subset
xS = {xs: s € §} € Q is the left cosetof S containing x.

Definition 6: Right coset

For a loop Q, a subloop S < @, and x € @, then the subset
Sx = {sx:s € S} € Q is the right coset of S containingx.

Definition 7: Commutant

The commutant, C(Q), of a loop Q is the set of those elements
¢ € Qwhich commute with each element in the loop. That is,
C(Q)={ceQ: Vx€EQ,cx=xc}

Defitnition 8: Decomposition property

A loop Q has left (respectively right) coset decomposition
modulo S if the set of all left (respectively right) cosets
modulo S is a partition of Q(Drapal A., Griggs T. S, 2016).

Definition 9: Bol loop

A Bol loop is loop (Q, -)satisfying the left or right Bol laws
ie.Vxyz€eqQ:

i)  @y0z=x(-x2)
(i) z(xy - x) = (zx - y)x)
Definition 10: Moufang loop

Left Bol law,
Right Bol law.

A loop L is called a Moufang loop if it satisfies any of the
following equivalent identities:

() xy.zx = (x.yz)x,
(i) x(y.xz) = (xy.x)z,
(iii) x(y.zy) = (xy.z)y forall x,y,z € L.

Definition 11: Steiner loop

A Steiner loop or a sloop is a groupoid (L,,, e), where (-) isa
binary operation and e is a constant satisfying the identities:

(i) e"x=x,

(i) X-y=y-x,

(iii) x-(x-y)=yforallx,ye€L.
Definition 12: Antiautomorphic loop

A loop L is said to be an antiautomorphic loop if it satisfies
the following property

Xy = yxV x,y € L.
Definition 13: Normal Subloop

A subloop S of a loop L is said to be normal if forall a,b € L,
the following holds:

(a-b):S=a-(b-S)Y=a-(S'b)

Note that the equality of the first two is not guaranteed
because we do not assume the loop to be associative.

Definition 14: Quotient loop

Let (L,”) be a loop and S a normal subloop of L. The quotient
loop L/S is defined as the following loop:

1. The set of elements of L/S is the set of left cosets of
S,i.e. subsets of the form a - S, with a € L.

2. The multiplication is defined by (a-S)-(b-S) =
(a-b)-S and is well defined and follows from the
definition of a normal subloop.

Nim Addition

Nim addition gives a convenient way of defining addition in
Z* to make it a field of characteristic two. It is carried out by
first writing the individual numbers in binary form and then
adding without carrying over.

Rules for Nim-addition

i.  The Nim sum of a number of distinct 2-powers is their
ordinary sum.
ii.  The Nim sum of two equal numbers is zero.

In this study we use Nim addition to:

i.  Generalize the construction of a cyclic subloop of the
split extensions of hypercomplex numbers.
ii.  Give a general way of generating left and right cosets
of a subloop.
iii.  Show that the multiplication of the elements of a
quotient loop is similar to Nim addition of the
subscripts of the individual elements.
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Some properties of Nim addition:

@ a®pf=pBa

(b) a®0=0Ba=a

© a@a=0

d @ep)dy=a®PBDy)

I1l. RESULTS AND DISCUSSION
Quaternion slit extensions

Quaternions Hform a four-dimensional algebra with the basis
1,i,j,and k. The multiplication of these basis elements is
defined by:

i2=j2=k?>=ijk=-1,ij=k,jk=1iki=j,ji=
—k, kj = —i,and ik = —j.

The quaternion split extensions H > S° forms a set of order
16. The basal elements of H > S° are defined as follows

ﬁ() = (1!1)! ﬁl = (l: 1): ﬁZ = (j' 1)! 33 = (k: 1):
B4 = (—1,—1), BS = (—i,—l),
BG = (_]J —1),
B = (=k,=1),Bs = (=1,1),
ﬁ9 = (_i! 1)! ﬂlO = (_j! 1);
B = (=k, 1), Bz = (1,—1),
Bz =0-1, Pu=0-1, Bis=(%k-1)

The multiplication of these elements is given by the following
table:

Table 1: Multiplication of quaternion split extensions (Magero F.B, 2007)

BO Bl BZ B?; ﬁ4 BS ﬁﬁ ﬁ7 ﬁS ﬁ'; ﬁlO ﬁll ﬁlZ ﬁ13 ﬁ14 ﬁlS
ﬁO BO Bl BZ B?; ﬁ4 BS ﬁﬁ ﬁ7 ﬁS ﬁ'; ﬁlO ﬁll ﬁlZ ﬁ13 ﬁ14 ﬁlS
ﬂl ﬂl ﬂS ﬂ3 ﬂlO ﬂS [”12 ﬁlS ﬁ6 39 30 ﬁll 32 313 B4 :87 :814
BZ .BZ ﬂll ﬂS .Bl ﬂé ﬁ7 [”12 ﬁ13 ﬁlo 33 30 ﬁ‘) Bl4 :815 B4 :85
BS .83 ﬂZ .89 ﬂS ﬂ7 ﬁ14 ﬁS [”12 ﬁll BlO ﬁl 30 315 :86 :813 B4
ﬂ4 ﬂ‘l- ﬂ13 ﬂl‘l- ﬂls ﬂS ﬂl [”2 ﬁ3 ﬁlZ 35 ﬁé 37 30 BQ :810 :811
BS .85 .84 ﬂls ﬂé ﬁ‘) ﬁB ﬁ3 ﬁlo ﬁ13 312 37 Bl4 ﬁl :80 :811 :82
B6 .86 ﬂ7 .84 ﬂ13 ﬂlO ﬁll ﬁB ﬂl ﬁ14 315 312 35 32 :83 :80 BQ
B7 .87 ﬂl‘l- ﬂS .84 ﬂll [”2 ﬂ‘) ﬁB [”15 ﬁé 313 312 33 :810 Bl :80
BB .88 .89 ﬂlO ﬂll ﬂ12 ﬁ13 ﬁ14 ﬁlS ﬁO ﬁl 32 33 ﬁ4 :85 :86 :87
ﬂ9 ﬂ9 ﬂO ﬂll ﬂZ ﬂ13 ﬂ‘l- ﬁ7 ﬁ14 ﬁl 38 33 BlO 35 :812 :815 :86
BlO .810 ﬂ3 ﬂO .89 ﬂ14 ﬁlS ﬂ‘l- ﬁS ﬁz ﬁll 38 ﬁl ﬁé :87 :812 :813
ﬁll .811 ﬂlO .31 ﬂO BIS .86 .813 BAI- ﬂS 32 ﬂ‘) ﬁS ﬁ7 :814 :85 :812
ﬁlZ .812 ﬂS ﬂé ﬂ7 BO BQ .810 .811 ﬁ4 ﬁlS 314 ﬁlS ﬁS Bl :82 :83
ﬁ13 ﬁl?, BIZ B7 BM— ﬁl BO ﬁll BZ ﬁS ﬁ4 BlS BG ﬁ'? .BB .83 .BIO
ﬁ14 ﬁ14 BIS BIZ BS BZ ﬁ3 BO BQ ﬁﬁ 37 ﬁ4 Bl3 BlO .Bll .BB ﬁl
ﬁlS ﬁlS BG Bl3 BIZ B3 ﬁlO Bl BO ﬁ7 BM— BS ﬁ4 Bll .BZ ﬁg .BB

Observations

1. Each element appears only once in every row and
every column. Thus any two elements define a third
one uniquely i.e.H > S°is a quasigroup.

2. By is the two-sided identity i.e. BoB8; = BBy = B; for
alli ={0,1,2,...,15}, and hence H > S° forms a loop.

3. H > S°is not associative since

BiB)IBr # Bi(BiBi) Vi.j, k ={0,1,2,..,15}
Example 3.2.1
(BoB11)B1z = Bro-P1z =Ps # Bo(B11P12) = Bo-B7 = P14
{(=, D=k D}A, -1 = (ik, DA, -1) = (=), —1)
=(—i,)(—k,—-1) = (ki,—1) = (,—-1)

Cyclic subloops of quaternion split extensions

In this section we construct cyclic subloops generated by each
element in quaternion split extensions. For example, the cyclic
subloop generated by B;, which is denoted by (B;) can be
constructed as follows.

<:81>1 =@D' =01 = B

B)? =@ DED = (-1,1) = B
B =(-LDE D) = (-1, =B
B =i, DED =1,1) =
Thus,

(Br) = {B1, B, By, Bo} = (Bo)
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Similarly, we can construct other cyclic subloops generated by
other elements,

1. (B2) = {B2, Bs, P10, Bo} = (B10)
(B3) = {B3, Bs, P11, Bo} = (P11)
(Ba) = {Bu, Bs, P12, Bo} = (Pi2)
(Bs) = {Bs, Bs, P13, Po} = (P13)
(Bs) = {Bs: s, Pra, Po} = (P1a)
(B7) = {B7,Bs, Bis, Bo} = (Pis)
7. (Bg) = {Bs, Bo}

Remark 3.2.1.1 In this case,(Bg) = {Bs, By} is the commutant
of H x S° with [(Bg)] = 2

Theorem 3.2.1Let(B;) be a cyclic subloop of H > S°, then:

euRrLN

1. The elements of the cyclic subloop can be generated
using Nim addition as follows:

B = {Bi, B ﬁcﬂ)i' Bo}

where, B;is the generating element, for all i € {0,1, ...,15},
and B, is the non-identity element in the commutant,
C(H x S°)

2. (B)=(Bigc) VP €H xS° and ¢ the subscript for
the non-identity element in C(H > S°) provided that
i#0

Coset decomposition

We now construct distinct left and right cosets of some
cyclic subloops in section 3. 2. 1 above. Examples
3221

1. Let S = (Bg) = {Bs, Bo} then the left cosets of S are as
follows:

B1S = Bi{Ps, Bo} = {Bo, $1} = {Bs, Bo}B1 = SP:
B2S = B2{Bs, Bo} = {B10, B2} = {Bs, Bo}B2 = SP2
B3S = P3{Bs, Bo} = {11, B3} = {Bs, Bo}B3 = SP3
BsS = Bu{Ps, Bo} = {B12, Bs} = {Bs, Bo}Bs = SPs
BsS = Ps{Ps. Bo} = {13, Bs} = {Bs, Bo}Ps = SPs
BsS = BeiBs. Bo} = {B14, Bs} = {Bs, Bo}Bs = SPs
B7S = B1{Bs, Bo} = {B15, B7} = {Bs, Bo}B7 = SP7
2. 1fS = (1) = {B1, Bs, By, Bo} = (Bo) then
Ba2S = B28B1, Bs, Bo. Bo} = {11, Pro, B3, B2},
BsS = BulPB1, Bs, By, Bo} = {13, Prz, Bs, Ba}y
BeS = Be{B1, Bs, Bo, Bo} = {B7, P14, P15, Pe}
SP2 = {B1, B, By, Bo}B2 = {B3, P10, P11, B2},
SBy = {P1, Bs, Bo, Bo}Bs = {Bs, P12, P13, B},
SBs = {B1,Bs, By, Bo}Bs = {P1s, P14, B7, Be}
3. IfS=(B2) = {B2, Bs, P10, Bo} = (B1o) then,

B1S = Pi{B2, Bs, P10, Bo} = (B3, Bo, P11, Pr },
BaS = ButPB2 Bs, Bro, Bo} = {B14, P12, Be, Ba},
BsS = Bs{PB2, Bs, Bro, o} = {P1s, P13, B7, Bs}
SPy = {B2, Bs, Bro, Bo3P1 = {B11, B9, B3, b1},
SPs = {B2, Be, Bro, Bo}Ba = {Be, P12, Pra, Pa},
SPs = {B2, Bs, P10, Bo}Bs = {B7, Pra, P1s, Ps}

Following the same method, the left and right cosets
generated by the other cyclic subloops of the quaternion split
extensions can be obtained.

Theorem 3.2.2 Let S =(B;) = {B:, B, Beei» Bo} be a cyclic
subloop of H > S°to get the left cosets of S, we choose an
element B; € H x S°such that f; ¢ S and carry out Nim
addition as follows:

B;S ={Byen. Bye o Brecen Byen}
On the other hand, to get the right cosets of S =(B;) =
{.Bi' .Bct ,Bc63 ir ,BO: we havea

SB; = {Bueyy Bea ) Breanes Poen}
Example 3.2.2.2

Let S ={(B;) = {B7,Ps Pis, Bo} then the subscripts for the
elements of B;S are obtained by Nim addition as follows:

B3S = B3{B7, Bs, P15, Bo}
= {B3B7, BsBs, B3Bis, B3bo}-
= {Bs07, B3@s P15, B3@o}
= {Bs B11, P12, B3}
Conclusions

Givenv g;, p; € H» 5°,i,j € {0, ...,15}

(1) Bi€ BiSorp; €SB
Sg =9
(i) 1S =|B;S|orISi| = |S;|
Therefore, the left or right cosets of a cyclic subloopS
partition H x S° into equivalence classes under the relation

Bi~B;-

Quotient loops arising from quaternion split extension

In this section we construct quotient loops using cyclic normal
subloops of the quaternion split extensions. First, we consider
a cyclic subloop of order 2 given by S = (Bg) = {Bs, By} The
left cosets of S are:

BoS = BotBs, Bo} = {Bs, Bo}.B1S = B1{Bs, Bo} = {Bo, 1},
B2S = B2iBs, Bo} = {B10, B23.53S = B3{Bs, Bo} = {B11, B3},
BaS = BalBs, Bo} = {B12, Ba}.BsS = Bs{Bs, Bo} = {B13, Bs}
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BeS = Bo{Bs, Bo} = {B1a, Bs}.and B7S = B7{Bs, Bo} =
{B1s, B7}.

The elements of the quotient loopH > S°/S are

ﬁOSI ﬂlsv ﬂZS’ ﬁ35’ ﬂll»S’ ﬂSS! ﬁ6S and ﬁ7S The
multiplication of these elements is given by the following
table.

Table 2: Multiplication of the elements of H x S°/S

BoS | BiS | BaS | BsS | BuS | BsS | BeS | BsS
BoS | BoS | BiS | BeS | BsS | BuS | BsS | BeS | BsS
BiS | BiS | BoS | BsS | BeS | BsS | BS | BsS | BeS
BaS | BaS | BsS | BoS | BiS | BsS | BiS | BS | BsS
BsS | BsS | B2S | BiS | BoS | B7S | BsS | BsS | BaS
BaS | BaS | BsS | BsS | BrS | BeS | BiS | BaS | BsS
BsS | BsS | BaS | BsS | BeS | BiS | BoS | BsS | BaS
BsS | BsS | BrS | BaS | BsS | B2S | BsS | BoS | BiS
BrS | BsS | BeS | BsS | BuS | BsS | BeS | BiS | BoS

To construct the Nim addition table of the subscripts of the
elements of H x S°/Si.e. 0, 1, 2, 3, 4, 5, 6 and 7refer rules for
Nim addition in the preliminaries section.

Next we construct a quotient loop using a cyclic normal
subloop M = (B;) = {B2, Bs, P10, Bo} Of order 4. The left
cosets of M are:

BoM = {ﬂz'ﬂa,ﬁw'ﬁo}y M = {ﬁ3,.39:.311131}'

BaM = {14, P12, Be, Bs} andBsM = {Bs, P13, B, Bs}-

Therefore, the elements of the quotient loop H x §°/M
are,foM, BM, B,M and ;M. The multiplication of
these elements is given by the following table.

Table 3: Multiplication of the elements of H % S°/M

BoM BM BsM BsM
BoM BoM BM BsM BsM
BiM BiM BoM BsM BiM
BsM BsM BsM BoM BM
BsM BsM BiM BM BoM

To get the Nim addition table of elements 0, 1, 4 and 5 refer
rules for nim addition in the preliminaries section.

From the above tables we observe that Vi, j, k € {0,1, ...,15}
and S a cyclic subloop of H x S°

(i) BiS.BiS=Pig;S
(i) BiS.B;S= BiS.BiSsinceidj=jDi
(iii) B;S.B;S = BySsincei@i=0
(iv) BiS(B;SBkS) = (BiSB;S)ByS since i @ (j @ k) =
(i )H)D kK
For a subloop S of order 2 the number of distinct cosets is
given by; ? =8.

We again notice that the subscripts of the elements of a
quotient loop formed from quaternion split extensions are
closed under Nim addition. The multiplication of the elements
of H x §°/Scan therefore be achieved by using Nim addition.

Octonion split extensions

Octonions Oform an 23-dimension algebra whose basis
elements are,{e, = (1,0),e; = (i, 0),

e; = (j,0),e3 =(k,0),e4 =(0,1),e5 = (0,0), e =
(0,)),e7 = (0,k)}. The multiplication of these elements will
be carried out using the Cayley Dickson process.

The Octonion Split Extensions form a set of order 32. Its
elements are of the form (x,y) where x € ©@ and y € S°. The
elements of @ x S° are thus defined as follows:

to = (eg, 1), 11 = (e1, 1), 1y = (ez,1), 43 = (3, 1), iy
= (64; 1); Us = (95; 1);
te = (€6, 1), 17 = (e7,1),4g = (—ep, 1), ug = (—ey, 1),y
= (—ez 1), 1y1 = (—e3, 1),
Mz = (—eq, 1), a3 = (—es, 1), g = (—e6, 1), s
= (_67; 1); Ui = (eO' _1)'
ti7 = (e1,—1), g = (€2, —1), g = (e3,—1), 1o
= (64-' _1)1 Ha1 = (65, _1)!
taz = (e, —1), U3 = (e7,—1), pq = (—eg, —1), lis
= (_61:_1)!H26 = (_62,_1),
Uo7 = (—e3,—1),Uuzs = (—ey, —1),lz9 = (—e5,—1),
Suzp = (—e, —1), 431 = (—e7,—1)
The multiplication table of these elements is given by the
following table:
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Table4. Multiplication of octonion split extensions (Magero F.B, 2007)

Ho | U1 | M2 | U3 | B4 | H5s | He | U7 | Hg | Ho | H10| H11| 12| 13| H14| Has | Hae| H17| Has| H19 | Hao| H21| Moz | H23 | Haa| Has| Hoe | H27| H28| H29| H30| H31

Ho | Mo | H1 | Ho | U3 | Ha | U5 | He | H7 | Hg | Ho | Hio| H11| H12| H13 | H1a| Has| Hie| Ha7 | H1g| H19| Hoo| H21| H22| Ho3 | Hoa| Has | Hae| Ho7| H2s| H29| H30| U31

Ui | M1 | Hg | U3 | Hao| Hs | H12| Has| He | Ho | Ho | Ha1| Ho | B13| Ha | K7 | H1g| Ha7 | Hoa| Ha7| Mg | Moo | Hoo| H23| H30| Hoas| Hie | H19| Hoe | H21| H2s| H31| H22

Hp | M2 | 11| Hg | M1 | He | U7 | Ha2 | 13| H10| M3 | Ho | Ho | H14| Has| M4 | Hs | Hag| Hi19 | Haa| H25| H30| H31| H20| Ho1| Hoe | H27| H16| 17| H22 | H23| Hag| H29

U3 | M3 | Ho | Ho | Hg | H7 | H14| U5 | K12 | 11| H1o| M1 | Ho | M15| He | K13 | Ha | H19| Hoe | H17 | H24| H31| H22| H29| Moo | H27| H1g| H25| 16| H23| H30| H21| Hos

Hy | Ha | Ha3 | H14| Has | Hg | B | H2 | M3 | 12| Hs | He | H7 | Ho | Ho | Hio| H11| Hoo| Ho1| H22| H23| Ho4| Has| H2e| Ho7| Hos| Ha9| H30| 31| Hie| H17| Hi1s| Hi9

Us | Us | H4 | Ba5| He | Ho | Hg | Ha1| H2 | 13| K12 | H7 | 14| H1 | Ho | U3 | K10 | H21| M28| H23| M30| H17| Ho4| H19| H26| Hoo| H20| H31| H22| H2s5| Hie | H27| H1s

Ue | He | M7 | Hg | K13 | H1o| U3 | Hg | Ho | H14| His| H12| Us | H2 | H11 | Ho | H1 | Ho2| HM31| Hog| M21| M1 | Ho7| H24| H17| H30| H23| H20| H29| H26| H19| Hi16| H2s

U7 | H7 | H1a| Us | Ha | H11| H10| H1 | H8 | Ha1s5| He | H13 | M1 | H3 | H2 | Ho | Ho | H23| H22| Ho9| M2g| H19| Hig| Mos5| Ha4| H31| H30| H21| Hoo| H27| H26| H17| H16

Ug | Hg | Ho | H1o| H11| H12| H13| Haa| Has| Hg | H1 | H2 | U3 | Ha | Hs | He | H7 | Hoa| H25| Hoe| M27| HM28| H29| M30| H31| Hi16| H17| His| H19| Hao| H21| H22| H23

Ho | Ho | Ho | 11| H2 | Ha3| Ha | H7 | H1a| U1 | Hg | H3 | H10| M5 | H12| Mas| He | Hos| H16| H19| Hoe| H21| Hog| H31| H22| Hi7| Hoa| H27| Hig| H29| Hao| H23| H30

Hio| H10| U3 | Ho | Ho | Maa| Has| Hga | Us | U2 | H11| Mg | M1 | He | H7 | Hi2| H13| H26| H27| 16| H17| H2o2| H23| H2g| Hoo| H1g| H19| H24| H2s| H30| U31| H20| H21

Hi1| H11| Hao| M1 | Ho | Ma5| Me | 13| Ha | U3 | H2 | Ho | Mg | H7 | H1a| U5 | H12| H27| Hig| Hos| Hie| H23| H3o| H21| Hog| H19| Hoe| H17| H24| H31| H22| H29| H20

Hi2| 12| Us | He | H7 | Ho | Ho | H1o| H11| M4 | H13| Haa| Has| Hg | H1 | M2 | H3 | Hag| Hoo| H3o| H31| Hi6| H17| Hig| H19| Hao| H21| H22| H23| H24| Hzs| H26| H27

H13| H13| K12 | M7 | Haa| M1 | Mo | U3 | 10| M5 | Ha | Ha5| He | Ho | Hg | Hi1| Ho | Ha9| Hoo| H31| H22| Hos| Hie6| H27| Hig| H21| H2g| H23| H30| H17| H24| H19| H2e

Hia| H14| Has| Hi2 | s | Ho | Ha1 | Ho | M1 | He | K7 | Ha | H13| H10| M3 | Mg | Ho | H30| H23| H20| H29| Hoe| H19| Hi6| Hos| Ho2| H31| Hog| H21| Hig| H27| H2a| H17

His| H15| He | H13| H12| U3 | H2 | Ho | Ho | M7 | H14| HUs | M4 | K11 | H10| M1 | Hg | H31| H30| H21| H2o| H27| H26| H17| Hi16| H23| H22| Ho9| H2s| H19| Hi1g| H2s5| Ho4

Hie| H16| Hos| Hoe| H27| H2g| Hoo| H3o| H31| Ho4a| H17| Hig| H19| Moo | Ho1| Ho2| H23| Hg | H1 | Ho | H3 | H4 | U5 | He | H7 | Ho | Ho | H10| H11| H12| H13 | H1a| His

Hi7 | M17| M6 | Ho7| Hag| Moo | Hoo| H23| H30| Mos| Hoa| H19| Hoe| M21| Hog| M31| Ho2| Mo | Mg | U3 | H1o| M5 | H12| Mas| M6 | M1 | Ho | H11| M2 | M13| Hg | M7 | H1g

Hig | M1g| H19| Hi6| Ha5| H30| H31| H20| M21| Hoe | Ho7| Haa| H17| Moz | H23| HM2g| Moo| Hio| H11| Hg | H1 | He | U7 | M1 | 13| M2 | U3 | Ho | Mo | H14| Ha5| M4 | Us

Hig | 19| Hoe| H17| H16| H31| H22| H29| M20| M7 | Hig| Has| Mo4| M3 | H30| M21| Hog| Ha1| M2 | Ho | Hg | M7 | M14| Hs | Hi2| U3 | H10| H1 | Mo | Has| He | H13 | Ha

Hoo | M20| M21| Moz | H23| M16 | Hos| Hoe| M27| Hog| Moo | H30| M31| M4 | H17| M1g| H19| Hi2| H13| H14| M5 | Mg | H1 | Ho | M3 | Ha | Us | He | H7 | Ho | Ho | Hi0| H11

Ho1| M21| Hog| H23| H30| H17| H16| H19| Ma6| Moo | Hoo| H31| Moo | Hos| Hoa| M27| M1g| H13| Ha | H1s| He | Ho | Hg | H11| M2 | U5 | M1 | H7 | H1a| M1 | Ho | M3 | H10

Hoa | M22| MU31| Hog| Ha1| Mg | Ho7| H16| M17| H30| H23| Ha0| Moo | Hoe | H19| M24| Mos| Hia| M7 | Hg | H13 | H10| U3 | Hg | Mo | He | H1s| 12| U5 | Ho | H11| Mo | M1

Ho3 | H23| Moz | Hoo| Hag| H19| Hig| Has| M16| H31| H30| Ha1| Moo | M27| H26| M17| Ho4| His| H14| Hs | He | K11 | M10| M1 | Mg | U7 | He | 13| H12| U3 | H2 | Ho | Ho

Hoa | Ha4| Ha7| Hag| H19| Moo | H21| H22| M23| Hie | Hos| Hae| Ma7| Mg | H29| M30| H31| Mo | Ho | H1o| M11| H12 | M13| Haa| Has| Mg | U1 | Hp | M3 | Ha | U5 | He | U7

Hos | Ua5| Ho4| Hi9| Hae| Mo1| Hog| H31| M22| H17| Hie| Ha7| M1 | Moo | Moo | M23| H30| M1 | Ho | H11| H2 | K13 | Ha | H7 | H1a| Ho | Ug | H3 | H10| M5 | H12| Hi5]| He

Hoe | M26| Ho7| Hoa| H17| Moz | H23| Hag| M29| Mg | H19| Hi6| Mas| H30| H31| M20| Ho1| M2 | U3 | Ho | Ho | H14| M15| K4 | U5 | H1o| H11| Hg | M1 | He | H7 | H12| H13

Ho7| M27| Mg | Uos| Haa| H23| H30| H21| M2g| 19| Hoe| H17| M1 | M31| H22| M29| Hoo| M3 | H10| M1 | Ho | H15| He | M13| M4 | Ha1| Ho | Ho | Hg | U7 | H14a| M5 | H12

Hog | U28| Moo | HU30| H31| Ho4| H17| H1g| M19| Hoo| H21| H22| H23| Hie| Ha5| M26| Mo7| M4 | Us | He | H7 | Ho | Ho | H1o| H11| H12| M13| H14a| Ha5| Hg | U1 | M2 | U3

Hoo | H29| Hoo| U31| H22| Hos| Hoa| Ha7| Mg | Ho1| Hos| H23| H3o| H17| K16 | H19| Hoe| M5 | Ha2| U7 | Haa| H1 | Ho | B3 | o | H13| U4 | Has| He | Ho | Hg | Ha1| K2

H30 | H30| H23| Hoo| H29| Hae| K19 | Haa| Ha5| Hoz | U31| Hog| Ho1| Has| H27| M6 | Ha7| He | Has| Ha2 | Hs | Ho | H11| Mo | M1 | Haga| U7 | K4 | Ba3| H10| U3 | M8 | Ho

H31| H31]| H30| Ho1| Hao| Ha7| Hoe| K17 | H24| Ho3| H22| H29| Hog| K19 | Hig| Ha5| Hae| M7 | He | F13| H12 | H3 | B2 | Ho | Ho | a5 | B4 | Hs | Ha | B11 | Hao| M1 | Hs
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Observations

1. Every element appears only once in every row and every
column. Thus every two elements define a third one
uniquely i.e @ > S° is a quasigroup.

2. Wyis the two sided identity of O xs°® ie py.u; ~1

Wity =y, for all i € {0,1,...,31}. We conclude that
Octonion split extension forms a loop.
3. O > S°isnotassociative i.e (u;u;j)ue # p; (i px) Vi

Example 3.3.1

U7 (H1oH14) = ty M1z = t3 F (H70) s = 13- H1a = P11
(e7, D{(—ez, D(—es, 1)} = (e7, (s, 1) = (e3,1)
* {(67' 1)(_62v 1)}(_e6' 1)
= (—es5,1)(—es 1) = (—e3,1)

Cyclic subloops of octonion split extensions

The cyclic subloop generated by w; is denoted by (u;) and is
given by:

(1) = {11, g, o, o} = (o)

It is constructed as follows:

m' = (e, D= (e, 1) =1y

m? = (er, D(e;, 1) = (—eg, 1) = pg
1 = (—ep, (e, D=(—ey, 1) = pg
m* = (e, Die, 1) = (e, 1) = po

Similarly, other cyclic subloops generated by other elements 2.

are:

1. (up) = {1z, tg, 10, o} = (t10)
2. {uz) = {3, g, a1, Mo} = {H11)
3. ua) = {4, g, a2, o} = (H12)
4. (us) = {us, tg, th13, to} = {H13)
5. (ue) = {le, g, M14, o} = (H14)
6. (u7) = {u7, g, s, 1o} = {H1s)
7. {ug) = {ug, o}

8. (u17) = {7, kg, tos, o} = (Hizs)

9. (u1g) = {i1g, g, U2, o} = (Hz6)
10. (u19) = {t19, g, a7, o} = {U27)

Remark 3.3.1.1 In the octonion split extension loop, the
commutant is (ug) = {ug, 110}, and|{ug)| = 2.

Theorem 3.3.1 Let {u;) be a cyclic subloop of @ > S°, then:

1. The elements of the cyclic subloop (u;) can be
generated using Nim addition as follows:

(i) = {iis tes Mo i Mo}

where, y;is the generating element, for all i € {0,1, ...,31}
and u,. is the non-identity element in the commutant,
C(0 % S°).
For example,

(Ha25) = {125, Us, Hos @ 8 o} = {25, e, a7, o}

(u) = (Ui @) V i € O S°and c the subscript for the
non-identity element in C (@ > S°) provided that i # 0.
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Coset decomposition

We now construct the distinct cosets using some cyclic
subloops of the octonion split extensions. Examples 3.3.2.1

Let S = (u1) = {1, g, Ho, o} = (o) then,
128 = polps, g, tho, o} = {111, 10, M3, 123,
1aS = gy, g, to, 1o} = {13, a2, Ms) s},
teS = teltn, e, tho, tho} = {17, M1 P15, e},
t16S = M6t He Mo, o} = {H2s, Haas 17, a6},
t1sS = mis{ty, e, to, o} = {19, 26, a7, Hag},
H20S = Moot e, o, o} = {Ha1, Kas) a9, a0},
228 = pao{t1, e o, o} = {H31, U30, 23, 22}
Stz = {11, g, o, otz = {u3, a0, 11, 2},
Sta = {11, g, o, potus = {s, a2, a3, el
Sue = {p1, g, to, todte = {Mas) 14, 7, Be
Stiie = {u1, Us, Mo, Hodtie = {17, taas Has, ae ),
Stiag = {1, tg, o, Mot = {H27, Hae, a0 tas}y
Stizo = {u1, s, Mo, Hodtz0 = {H20, ag) a1, a0}
Stizz = {u1, Us, Mo, Motz = {Ha3, U30, U31s a2}

For S= (u3) = {us, ug, a1, o} = (pa1) then,
1S = i {ns, tg, i1, o} = {10, Ho, oy 1}
1aS = palpts, g a1, o} = (s, ez, iy, el
HsS = ps{uz, g, 1, o} = (ke a3, Hass s},
t16S = te{tts, g, 1, o} = {H27, Hoas 19, Ha6}s
t17S = paz{ts, g, 11, o} = {s, Has, Hae, a7},
t20S = paoltts, ts a1 o} = {M23, tas) a1, a0}
228 = Moo {its, g, a1, o} = {21, 30, H29) Ha2 }
Spa = {us, g, ta1, o3 = {1z, o, phio, e},
Sta = {uz, g, 11, Hodta = {17, 2, s, tady
Sus = {uz, kg, a1, hodts = {tha, a3, te s},
St1e = {u3, e, a1, Bodtie = {119, Uaar 27, a6}
Stz = {1z, He, Ha1, o3ty = {la6, Hos) g, a7},
Stzo = {13, g, 111, Moo = {H31, s, Ho3, 20}

Stzy = {13, Ug, ta1, Mo3t2z = {H29, U30, Ha1, Moz }

In a similar way, the left and right cosets of the other cyclic
subloops of the octonion split extensions can be obtained.

Theorem 3.3.2 Let S = (u;) = {1 thes B @ ) Mo} be @
cyclic subloop of @ x S°, the left cosets of S can be
obtained by Nim addition as follows:

WS = {uj oirljoc i e o) Hj 690}
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where u; € O x S°and w; € SVi,j € {0,1,2,...,31}. On the Quotient loops arising from octonion split extensions
other hand, the right cosets of S are obtained as follows: If S = (ug) = {ug, 1o} is a cyclic normal subloop of®
Sk = {#i ejrhcojr hio )@ Ho eaj} Seof order 2, then the left cosets of S are:

Example 3.3.2.2 1oS = poflits, o} = (kg to}, 1S = (s, o} = {tto, 1113,

IS = (u3) = {3, tg, t1, o3, then the subscripts for the g = y, fug, o} = o, 2}, 138 = st o}

elements of p;,S are obtained by: = {11, U3},
Hi2S = paa{us, g, tans o} 1S = ua{ttg o} = {azs tad usS = s{tg, o}
= {123, a2 tg) Pa2bian, Haz Mo} = {ms s}
= (U1203 L1208 L2011 L1260} teS = telug o} = e tie}, w78 = prlug po}
( ) = {us, 47},
= W15, Ug) U7, U125+
) eS = Hiells o} = {Maas 6}, H17S = M17{us, to}
Conclusions = {liys, U171},
Givenv p;, u; € 0> 5%14,j € {0,1,2,..,31} tsS = pslue o} = (ka6 1l 119S = paofuts, po}
(') Wi € WS orp; €Sy, = a7 pro}
(i) wS= pSandu,Sn S =@orSu = Sy; t20S = taolts o} = {tas t20}b H21S = war{us, 1o}
and Sp; N Sp; =@ = {120, 21},
(i) [ S| = |'“J'S| or | Su;| = |S'“1'| ) H22S = aolts to} = {30, 22}, and  ppS =
Therefore, the left or right cosets of a cyclic subloopS Haz{tg, to} = {31, o3}
partition @ > S° into equivalence classes under the relation Therefore, the elements of @ x S° / S are:
Hi~Hy- UoS, WS, U2S, U3S, S, UsS, UeS, U7S, MeS, H17S, MagS

U2 S, and u,3S. The multiplication of these elements is
given by the following table.

Table 5: Multiplication of the elements of © > S°/S

HoS WS H2S uzS S UsS UeS 1) H16S 7S MigS H19S H20S US H22S H23S
HoS HoS WS H2S uzS S UsS UeS 1) H16S 7S HigS H19S H20S U2S H22S H23S
wS WS HoS U3S U2S UsS HaS I HeS H17S H16S H19S H1gS H21S U208 H23S H22S
H2S U2S uzS HoS WS UeS 1) S UsS H1gS M19S H16S H17S H22S U23S H20S U218
H3S uzS U2S WS HoS U7 HeS UsS HaS H19S HigS 7S H16S H23S U22S U2S H20S
HaS uaS UsS HeS U7S HoS WS u2S H3S U208 H21S H22S U23S H16S M17S i8S H19S
HsS UsS ugS H7S UeS S HoS uzS H2S U218 H20S H23S U22S 7S H16S H19S i8S
HeS UeS UzS HgS UsS UzS uzS HoS WS U22S H23S H20S U1 S H1gS H19S MeS 7S
UzS UzS UeS UsS UyS uzS U2S wS HoS U23S H22S U1 S Hz0S H19S HigS 7S MeS
H16S MeS 7S HigS 198 Hz0S Uz21S U2z S U23S HoS WS U2S uzS UyS UsS UeS uzS
7S 7S H6S H19S gS U218 U208 H23S Uz2S wS UoS uzS U2S UsS HgS UzS HeS
MigS U1gS 198 H16S 7S H22S U23S H20S U2S H2S uzS HoS WS UeS uzS UyS UsS
M19S 198 1gS 7S W6S H23S Uz2S U218 U208 uzS UzS WS HoS UzS HeS UsS HqS
Uz0S H20S U2S U2z S U23S M16S M17S HigS H19S HqS UsS HeS UzS oS wS 17N uzS
U1 S U21S U208 Uz3S Uz2S 7S H16S H19S HigS UsS UgS UzS HeS WS HoS usS U2S
U2z S U22S U23S Uz0S U2 S H1gS H19S M16S H17S HeS UzS HaS UsS I7N uzS oS WS
U23S H23S U22S U1 S U208 H19S H1gS 7S H16S HzS UeS UsS HgS uzS U2S WS HoS

UM = {uy3, oz, ts, s hbeM = {7, 14, P15, Ue
The Nim addition table of the elements 0, 1, 2, 3, 4, 5, 6, 7,

16, 17, 18, 19, 20, 21, 22 and 23 can easily be obtained teM = {lizs, taas 17, 16 1 isM = {t19, a6, a7, tas},
using the rules for nim addition in the preliminaries section. UaoM = {l21, Uag, oo, Hao ), aNd

Next, we letM = (uy) = {1, U, 1o, tho} = {11o) be a cyclic U2oM = {31, U30, a3, 22 }-

normal subloop of order 4. The left cosets of M are: In this case, the elements of @ x S°/M are, ugM, M,

oM = {1, g, o, o} uaM = {41, 10, U3, 2}, WM, pM, puM, s, paoM,and i, M. The
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multiplication of these elements is given by the following
table.

Table 6: Multiplication of the elements of © x S°/M

UM | oM | uaM | ugM | pyeM| p1gM| ppoM| p2o M

oM | oM | poM | M | pugM | pygM| pigM| pio M| pi2 M|

UM | oM | uoM | ugM | usM | pigM| pieM| pao M| pooM

waM | pyM | pM | oM | oM | ppo M| pao M| pieM| pigM

UeM | ugM | uaM | ;M | poM | poo M| pooM| pigM| 1M

M| peM| pagM| paoM| uzo M| oM | poM | M | pgM

mgM| uigM| uieM| pao M| pooM| oM | oM | M | peM

HooM| paoM| poo M| M| wigM| uaM | ugM | poM | p,M

U2 M| Uao M| ppoM| uigM| pieM| M | paM | oM | poM

To get the Nim addition table for the elements 0, 2, 4, 6, 16,
18, 20 and 22, refer rules for nim addition in the
preliminaries section.

Observations
From the above tables we observe that vV i, j, k €
{0,1,...,31} and for S a subloop of O x S§°

() wSuwS=we;s
(iii) p;S. ;S = peSsincei @i =0

(V) wS(SwcS) = (uiSp; SHweS since id (j @ k) =
i )NS K
For a subloop S of order 2 the number of distinct cosets is
given by; % =16.
We conclude that the subscripts of the elements of the

quotient loop generated from octonion split extension are
closed under Nim addition. The multiplication of the
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elements of the quotient loop can thus be achieved by Nim
addition.

IV. CONCLUSION

The multiplication tables for the split extension of
hypercomplex numbers were constructed by use of the
Jonathan-Smith doubling formula. Cyclic subloops were
then constructed. The results showed that the cyclic
subloops of the split extension of hypercomplex numbers
are either of order 2 or 4. Coset decomposition was carried
out and the results also showed that the cosets of a cyclic
subloop of a split extension loop form a partition of the loop
i.e. any two left or right cosets of a cyclic subloop of a split
extension loop are either disjoint or identical. Nim addition
was also used to give a general way of generating cyclic
subloops and distinct cosets arising from them.Finally, in
chapter four, quotient loops were constructed and the results
confirmed that the multiplication of the elements in the
quotient loop is achievable by just considering the Nim-
addition of the subscripts of the individual elements.
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