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Abstract- An unsteady MHD flow of a viscous incompressible 

fluid over a semi-infinite plate with variable surface temperature 

in the presence of heat source is studied. The governing 

equations of the flow are converted into dimensionless form and 

the resulting non-linear differential equations are solved 

numerically using Alternating –Direction-Implicit (ADI) 

Technique. Flow parameters are obtained and are presented 

graphically. It was observed that the fluid velocity decreases with 

increase in magnetic field. 
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I. INTRODUCTION 

n engineering and technology, there are numerous 

applications of the study of transient natural convection 

flows over vertical plates. These studies are frequently used in 

heat transfer around different types of electronic and electrical 

devices, nuclear reactors etc. Extensive research is done for 

the study of free convection flows over vertical plates under 

variable conditions. Various techniques such as integral 

method [1], finite difference scheme [2],[3]. Crank Nicholson 

implicit scheme [4] etc are employed for these studies of the 

convection flows. 

Alternate Direction Implicit scheme is an effective tool for the 

solution of problems expressed by elliptic and parabolic 

partial differential equations. In recent years, many 

researchers have employed this scheme for the solution of 

variety of problems. Cheng and Wang[5] applied this method 

to study forced convection in micropolar fluid flow over a 

wavy surface. Wang and Cheng [6] studied the flow through a 

sinusoidally curved converging–diverging channel and 

analyzed the skin-friction and Nusselt number for the flow for 

variable wavy geometry, Reynolds number and Prandtl 

number. In the presence of a transverse magnetic field, Wang 

and Chen[7] studied mixed convection boundary layer flow 

past an inclined wavy plate and presented numerical solution 

for the flow for different values of magnetic field, buoyancy, 

wavy geometry and material parameters. Navarro et al [8] 

presented numerical simulations of two dimensional 

incompressible fluid flows under the influence of a magnetic 

field at low magnetic Reynolds number. Hakeem et al [9] 

employed alternating direction implicit method to study 

natural convection cooling of thermally active plates kept at 

the center of an air filled cavity, taking two different boundary 

conditions applied on the cavity walls. 

Nejad et al [10] studied mixed convection flow of electrically 

conducting power law fluids along a vertical wavy surface 

under the influence of a transverse magnetic field.  They have 

discussed the effects of flow structure and dominant 

convection mode on the overall parameters of flow and heat 

transfer and investigated the alterations in boundary layers 

with magnetic field. Kiyasatfar and Pourmahmoud [11] 

studied  viscous dissipation and joule heating effects in the 

presence of transverse magnetic field for electrically 

conducting non-Newtonian fluids through 

square microchannels. For different values of flow index and 

dimensionless shear rate parameter of modified power-law 

fluids, they obtained velocity, temperature profiles, product of 

friction factor–Reynolds number and Nusselt number. Majee 

and Shit [12] investigated unsteady flow of blood, treating it 

as Newtonian fluid and performed heat transfer to have better 

insight of blood flow through arteries under stenotic 

condition. Liu et al [13] studied two dimensional multi-term 

time fractional mixed diffusion and diffusion-wave equations 

and proved numerical stability and convergence of the 

alternating direction implicit (ADI) spectral method. Kaushik 

[14] used alternating direction implicit technique to 

numerically study an unsteady flow past a semi- infinite plate 

with temperature oscillations. 

In this paper, we employ Alternating Direction Implicit 

scheme to study the combined effect of magnetic field and 

viscous dissipation past a semi-infinite vertical plate subjected 

to a variable surface temperature, when the fluid is 

incompressible, viscous and electrically conducting. For the 

analysis the dimensionless form of the governing boundary 

layer equations is used. The paper has six sections. Section I 

contains the introduction of the problem. The formulation of 

the problem along with the initial and boundary conditions is 

done in Section II. Section III discusses the Alternating 

Direction technique and its application to the nonlinear 

differential equations resulting from the MHD flow over a 

semi-infinite plate with variable surface temperature. Section 

IV consists of the stability analysis of the problem. Section V 

I 
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contains the results obtained and discussion of these results. 

Section VI concludes the research work. 

II. MATHEMATICAL ANALYSIS 

An unsteady, 2D electrically conducing, viscous 

incompressible fluid flow over a semi-infinite vertical plate 

having variable surface temperature is considered. We are 

making following assumptions 

1. The X- axis  0y  is measured along the plate 

vertically upward and the Y-axis  0x   is 

measured normally to the plate.  

2. The fluid is at rest and at temperatureT
 . The 

variable temperature of the plate is 
wT T
  and is 

taken as n

wT T Ax
   .  

3. The acceleration due to gravity is acting downward.  

4. All fluid properties are constant except for effect of 

density variation with temperature, which is taken in 

the body force term.  

5. The energy equation includes the effect of viscous 

dissipation.  

6. A uniform magnetic field 0B is applied along the Y-

axis. 

With these assumptions and application of the Boussinesq 

approximation, the governing conservations equations are 

given by: 
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where u and v are the velocity components in the x and y  

directions, respectively;   is fluid density, g  is 

gravitational acceleration , t is time and T  is temperature of 

the fluid in the boundary layer,   is volumetric coefficient of 

thermal expansion,  is coefficient of viscosity . 0B is the 

magnetic field induction, is electrical conductivity, 0Q  is 

heat generation/absorption, PC  is the specific heat and k is 

the thermal conductivity of the fluid. 

The initial and boundary conditions are: 

0 : 0 , 0, ,

0 : 0 , 0, 0

0 ,

0 , 0

n
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We define the following non-dimensional quantities 
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    (5)                                   

where L is the reference length,   is the kinematic viscosity, 

Gr  is the Grashof number, Pr is Prandtl number, M is the 

magnetic field parameter,  is the heat source parameter and 

 is viscous dissipation parameter. Eqn. (1)-(3) reduces to 

non-dimensional form as 
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                                  (8) 

and the initial and boundary conditions (4) as

 

0 : 0 , 0, 0 ,

0 : 0 , 0, 0

0 , 0

0 , 0 0

n

t u v T x y

t u v T x at y

u T at y

u T at x

     

    

  

  

   (9)

 

III. NUMERICAL TECHNIQUE 

The dimensionless partial differential equations governing the 

flow given by (6)-(8) under the initial and boundary 

conditions (9) are solved using Alternating-Direction-Implicit 
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technique. The scheme consists of two steps. The first step 

comprise of writing PDEs into difference equations which are 

implicit in 𝑥 at an intermediate time level 𝑚 +
1 

2
. The 

unknowns associated with the 𝑥-derivatives are evaluated in 

this step. The implicit difference equations at the time level 

𝑚 +
1 

2
 are written as 

1 1
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The eqns. (10) - (12) reduces into tri-diagonal form. Thomas 

Algorithm is used for solving this tri-diagonal form to obtain 

solutions for
1

2
,

m

i ju


and 
1

2
,

m

i jT


 for all 𝑖, keeping 𝑗 fixed. This 

step is repeated for next value 𝑗 + 1 and so on. The values of 
1

2
,

m

i ju


and 
1

2
,

m

i jT


at intermediate time level 𝑚 +
1 

2  
 is known for 

all (i, j,) in the end of this step. 

In the next step, we write difference equations which are 

implicit in 𝑦 at time level 𝑛 and obtain unknowns associated 

with the 𝑦-derivatives. The implicit difference equations at the 

time level 𝑛 are written as 
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We are reducing eqns. (13)-(15) to tri-diagonal form and yield 

solutions for , ,,m m

i j i jv u and ,

m

i jT  for all 𝑗, keeping 𝑖 fixed, 

again using Thomas Algorithm. The calculations are repeated 

for all values of 𝑖 . The values of , ,,m m

i j i jv u and ,

m

i jT at next 

time level 𝑚 is known for all (i, j) at the end of this step. Note 

that, here, the subscript i  in , , ,, ,m m m

i j i j i ju v T
 
represents the 

grid node along the x- direction and j  subscript represents 

the grid node along the y- direction. 

Assuming the domain of integration as a rectangular region 

with sides

                             

0 , 1;x x  0 , 14y y  , 

where 14y  corresponds to conditions at infinity, 

computations are performed. The mesh size is taken as 

0.05, 0.25x y    with the time step as 0.01t  .  

IV. STABILITY ANALYSIS 

The stability of differencing scheme is investigated using 

Von-Neumann Technique. The general term of the Fourier 

expansion for u and T at an arbitrary time t=0 is assumed to 

be of the form 
iax ibye e  where 1i   . At any time t, these can 

be written as 
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and Eqn. (15) reduces to 
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in eqn. (18), equations (17) and (18) in 

matrix form can be written as 
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If the modulus of each Eigen value of the matrix is less than 

unity, the stability of the differencing scheme can be 

established. Since coefficient matrix in Eqn. (19) is triangular, 

its Eigen values are the diagonal elements i.e. C

A
and D

B
. We 

have to check if
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Clearly, the real part of A is always greater than or equal to 

the real part of C . Therefore,  1
C

A
  

Similarly, we can prove that 
1

D

B


. This proves that the 

differencing scheme is unconditionally stable.  

 

V. RESULT AND DISCUSSION 

Numerical computations are carried out at different time 

intervals and for different values of Pr 0.7 , 7.0 ;

0.0,0.5,1.0 ; 0.0,0.5 ,1.0M    0,1, 2 ; 0.5,1.0n   unknown 

variables u  velocity and temperatureT are obtained. Taking

0.05 , 0.25; 0.01x y t      , the ADI algorithm has 

been implemented in MATLAB programming language. The 

unknown quantities are obtained at all node points and 

the accuracy of these numerical results is compared to precedi

ng literature studies 

In Fig.1 and Fig. 2, the transient velocity and temperature 

profiles are plotted for two values (Pr=0.71 (air), 7.0 (water)) 

of the Prandtl number of the fluid and three different values 

(𝑀 = 0.0,0.5,1.0) of magnetic field parameter. It can be seen 

that fluid velocity increases with time and then decreases 

subsequently. An increase in magnetic field results in decrease 

in the fluid velocity. This result holds because with increase in 

magnetic field, the Lorentz forces increases, which oppose the 

flow. This results in decrease in velocity of the flow. 

 

               Fig. 1: Velocity profile at x=1.0 for 

   𝑛 = 0.5, = 𝜑 =                      0.5, 𝜀 = 1.0 at𝑡 =1.5 

 

Fig.2: Temperature profile at x=1.0 for                       𝑛 = 0.5, = 𝜑 = 0.5, 𝜀 =
1.0 at𝑡 =1.5 
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               Fig. 3: Velocity profile at x=1.0 for 

Pr = 0.7, M =                      0.5,𝜑 = 0.5 at 𝑡 =1.5 

In Fig.3 and Fig. 4, the transient velocity and temperature 

profiles for Pr=0.7 are plotted for three different values of the 

viscous dissipation parameter (ε=0, 1, 2) of the fluid and two 

different values of exponent (𝑛 = 0.5, 1). We see that an 

increase in value of exponent n decreases the velocity of flow. 

Also, larger values of ε resultsin higher velocities. An increase 

in value of n, results in decrease in temperature, whereas 

temperature increases with increase in value of ε. This is 

agreeable because larger value of viscous dissipative heat 

increases the 

 
Fig. 4: Temperature profile at x=1.0 for Pr = 0.7, M = 0.5, 𝜑 = 0.5 at 𝑡 =1.5 

 

 Fig. 5: Velocity profile at x=1.0 for Pr = 0.7, M = 1.0, ε = 1.0, n = 0.5 

at 𝑡 =1.5 

                        

Fig. 6: Temperature profile at x=1.0 for Pr = 0.7, M = 1.0, ε = 1.0, n = 0.5 

at 𝑡 =1.5 

Temperature of the fluid. In Fig.5 and Fig. 6, the transient 

velocity and temperature profiles are plotted for three 

different values of the φ=0.0, 0.5, 1.0 for Pr=0.7. An increase 

in velocity of flow can be observed with increase in heat 

source parameter.  Also, the presence of heat source produces 

energy, which results in higher fluid temperature. The same 

can be observed in Fig. 6. 

VI. CONCLUSION 

Numerical solutions for an unsteady flow past a semi- infinite 

vertical plate subjected to a variable surface temperature 

under the influence of magnetic field and viscous dissipation 

are obtained using Alternating –Direction-Implicit (ADI) 

Technique. Numerical computations were performed for 

velocity and temperature for different values of Prandtl 

number, magnetic field parameter, viscous dissipation 

parameter and heat source parameter. It was observed that the 

fluid velocity decreases with increase in magnetic field or 

with increase in value of exponent n, whereas increase in ε or 

heat source parameter results in increase in velocity of fluid. It 

was also observed that increase in n results in the decrease in 

temperature, whereas temperature increases with increase in 

value of ε. The findings obtained align well with previous 

studies
15

 available. 
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