Remarks on Commutativity Results for Alternative Rings With $[x(x^2y^2), x] = 0$

Abubakar Salisu¹, Tasi'u Abdullahi Yusuf² and Shu'aibu Salisu³

¹Science and Technical Education Board Dutse, Jigawa State, Nigeria ²Department of Mathematics and Statistics Umaru Musa Yar'adua University Katsina, Nigeria ³ Katsina State Science and Technical Education Board, Nigeria

Abstract: In this article, it is shown that the commutativity of alternative ring satisfying the following properties:

$$(p_1)[x(x^2y^2),x]=0$$

$$(p_2) [x(xy), x] = 0$$

Keywords: Alternative ring, assosymetric ring, commutator, prime rings.

I. INTRODUCTION

Throughout R represents an alternative ring, C(R) the \bot commutator, A(R) the assosymetric ring. N(R) the set of nilpotent element. An alternative ring R is a ring in which (xx)y = x(xy), y(xx) = (yx)x for all x, y in R, these equations are known as left and right alternative laws respectively. An assosymetric ring A(R) is one in which (x, y, z) = (p(x), p(y), p(z)), where p is any permutation of $x, y, z \in R$. An associator (x, y, z) we mean by (x, y, z) =(xy)z - x(yz) for all $x, y, z \in \mathbb{R}$. A ring R is called a prime if whenever A and B are ideals of R such that $AB = \{0\}$ then either $A = \{0\}$ or $B = \{0\}$. If in a ring R, the identity (x, y, x) = 0 i.e. (xy)x = x(yx) for all x, y in R holds then R is called flexible. A ring R is said to be m-torsion tree if mx = 0 implies x = 0, m is any positive number for all $x \in R$. A non-associative rings R is an additive abelian group in which multiplication is defined, which is distributive over addition on left as well as on right [(x + y)z = xz + yz] $z(x+y) = zx + zy, \forall x, y, z \in R$

Abujabal and Khan [1] proved the commutativity of associative ring satisfies the identity $(xy)^2 = xy^2x$. Gupta [2] established that a division ring R is commutative if and only if [xy, yx] = 0. In addition, Madana and Reddy [3] have established the commutativity of non-associative ring satisfying the identities $(xy)^2 = x^2y^2$ and $(xy)^2 \in Z(R) \forall x, y \in R$. Further, Madana Mohana Reddy and Shobha latha.[4] established the commutativity of non-associative primitive rings satisfying the identities: $(x(x^2 + y^2) + (x^2 + y^2)x \in Z(R)$ and $x(xy)^2 - (xy)^2x \in Z(R)$, Motivated by these observation it is natural to look commutativity of alternative rings satisfies: $(p_1) \& (p_2)$.

In the present paper we consider the following theorems.

II. THE MAIN THEOREMS

Theorem 2.1 Let R be a 2,3-torsion free alternative ring with unity satisfy (p_1) , Then R is commutative.

Now, we begin with the proof of our theorems.

Proof of Theorem 2.1

From the hypothesis (p_1)

(1) $x[x(x^2y^2)] = [x(x^2y^2)]x$, for all $x, y \in \mathbb{R}$.

Substitute x = (1 + x) in (1), apply 2,3 torsion free and use (1) we get

(2) $y^2x = xy^2$, for all $x, y \in R$.

Substitute y = (y + 1) in (2)

(3) $xy^2 + 2xy + x = y^2x + 2yx + x$, for all $x, y \in \mathbb{R}$.

Use (3) and Apply 2-torsion free

This implies xy = yx and R is commutative.

Since R is a commutative ring and satisfies the identities either (xx)y = x(xy) or

y(xx) = (yx)x, so that R is an alternative ring. Hence an alternative ring R with identity together with commutativity yields (x, x, y) = 0 = (y, x, x), which completes the proof.

Theorem 2.2 If R is an alternative ring with unity satisfy (p_2) then R is commutative.

Proof of Theorem 2.2

From the hypothesis (p_2) , (4) x[x(xy)] = [x(xy)]x

Replace x by (x + 1) in (4) and apply 2-torsion free we have

 $(5) xy + x(xy) + y = yx + x(xy) + y, \quad \text{for all } x, y \in \mathbb{R}.$

Collect like terms in (5).

This implies xy = yx and R is commutative.

Now using the same argument as in last paragraph of the proof of the theorem $2.1\,$

REFERENCES

- [1]. H.A.S Abu Jabal and M.A Khan. (1993) "Some Elementary commutativity theorem for Associative Rings", Kyungpook Math J
- [2]. Gupta.R.N. (1970). Nilpotent matrices with invertable transpose,proc.Amer.Math.Soc.,24, 572-575.
- [3]. Y. Madana Mohana Reddy, G. Shobhatha and D.V Ramin Reddy (2017) "Some Commutativity Theorem for non-associative rings" Math Archive, 5:379-382.
- [4]. Madana Mohana Reddy and Shobha latha. (2020). On Commutativity for certain of Non-Associative Primitive Rings with: $[x(xy)^2 (xy^2)x \in Z(R)].7: 292 294$.