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Abstract: This paper presents a mathematical model of the 
telephone and telegraph equations in a transmission line. The 
flow of electricity in a transmission line was considered. It was 
observed that waves and wave propagation are ubiquitous in 
nature and lead to many puzzling questions. For example, why is 
it that a storm over the ocean sets off a steady swell of small-
amplitude waves, but an earthquake at the sea floor can release 
an enormous flood wave? What produces mirages in the desert? 
In response to these questions, a great deal of mathematics has 
been developed to understand and predict the dynamics of light 
or sound waves the propagation of matter waves, the vibration 
patterns of elastic bodies, or the peculiar nature of water waves. 
This paper will provide a guided tour of mathematical wave 
theory together with physical applications, including the linear 
wave equation, dispersion and nonlinear waves and solitons. 
Mathematically one – dimensional heat equations for the flow 
were derived. 
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I. INTRODUCTION 

his paper described key modeling concept for mobile 
communication systems operated in outdoor 

environments. In transmission line there are many interactions 
between electro-magrictic waves, the antennas which launch 
and receive them and the environment through which they 
propagate, in order to understand outdoor mobile propagation. 
Sometimes these effects are treated using detailed physical 
models but more usually they are considered too complex and 
are treated in an empirical or statistical manner. This paper 
examines how these effects are modeled for telephone and 
telegraphs which together comprise the main system types 
used in cellular mobile communications. The transmitted 
information, encoded as suitable wave forms by the 
transmitter is modified by channel noise in ways which may 
be more or less unpredictable to the receiver, so the receiver 
must be designed to overcome these modifications and hence 
to deliver the information to its final destination with as few 
errors or distortions as possible. This is detected by the 
telephone and telegraph equations. It was noted that waves 
and wave propagation are ubiquitous in nature and lead to 
many puzzling questions. For example, why is it that a storm 
over the ocean sets office steady swell of small-amplitude 
waves but an earthquake at the sea floor can release an 
enormous flood wave? Can you hear the shape of a drum? In 
response to these questions, a great deal of mathematics has 

been developed to understand and predict the dynamics of 
light or sound waves, the propagation of matter waves, the 
vibration of patterns of elastic bodies or the peculiar nature of 
water waves.   

II. A ONE DIMENSIONAL WAVE EQUATION MODEL 

We consider the flow of electricity in a long cable (or 
transmission line). We assume the transmission line to be 
imperfectly insulated so that there is both capacitance and 
current leakage to the ground. See figure I below. 

 

We make the following assumptions. Specifically, we let 

x = distance from the sending end of the transmission line 

e (x,t) = potential at any point on the transmission line at any 
time. 

i (x,t) = current at any point on the transmission line at any 
time 

R = resistance of the transmission line per unit length. 

L = inductance of the transmission line per unit length. 

G = Conductance to the ground per unit length of the 
transmission line 

C = capacitance to the ground per unit length of 
transmission line. 

Since the potential at Q is equal to the potential at P minus the 
drop in potential along the element PQ, we see from the 
equivalent circuit shown in figure 1 (b) that 

e (x+∆x,t) = e (x,t) – (R∆x) 𝔦– (L∆x)  

T
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e (x+∆x,t) - e (x,t)  = – (R∆x) 𝔦 – (L∆x)  

On, dividing by ∆x and then letting ∆x tend to zero gives 

 = - R𝔦- L                                                                                  (1) 

Likewise, the current at Q is equal to the current at P minus 
the current loss through leakage to ground and the apparent 
current loss due to the varying charge stored on the element. 
Hence, referring again to figure I (b), we have 

𝔦 (x+∆𝑥, 𝑡) = 𝔦 (x, t) – (G∆x) e – (C∆x)  

or𝔦 (x+∆x,t) – 𝔦 (x, t) = - (G∆x) e – (C ∆x)                         (2) 

Dividing by∆x  and letting ∆x approach zero gives 

 = - Ge – C                                                                      (3) 

If we differentiate equation (1) with respect to x and equation 
(3) with respect to t, we obtain 

= R  - L                                                                   (4) 

 = - G  - C                                                                (5) 

We eliminate the term ≡ between these two 

equations and then substitute for  from (3), to obtain 

 = LC  + (RC + GL)  + RGe                                      (6) 

By differentiating (1) with respect to t and equation (3) with 
respect to x and then eliminating the derivatives of e, we 

obtain a similar equation for i.e  = LC +  (RC +

 GL)  +  RGi                                                                                (7) 

Equations (6 and (7) are known as the telephone equations. 
They assert that e and i satisfy the same partial differential 
equation. Two special cases of the telephone equations are 
worthy of note: 

Case (i) if leakage and inductance are negligible ie. if G = L = 
O, as they are, for example, for coaxial cables, Equations (6) 
and (7) reduce, respectively, to 

= RC                                                                              (8) 

=RC                                                                               (9) 

These are known as the telegraphy equations 

Mathematically, they are identical with the one-dimensional 
heat equation 

 a2 =  ;            a2 = ℓ
                                        (10) 

case (ii) At high frequencies the factor introduced by the time 

differentiation is large. Hence the terms involving e and  or i 

and  are insignificant in comparison with the terms 

containing the corresponding second derivatives and  

In this case Equations (6) and (7) reduce respectively to 

  = LC                                              (11) 

  = LC                                              (12) 

Each of these is an example of the  one - dimensional wave 
equation 

  = a2  ;a2=  

  
√

having, in fact the dimensions of 

velocity. These equations are obtained at any frequency of 
course if R = G = O 

III. RESULT AND CONCLUSION 

It is interesting to note that nowhere in the derivation of any 
of the preceding equations was any use made of boundary 
conditions. In other words, the same partial differential 
equation is satisfied by the deflections of a membrane whether 
the membrane is round or square, the same equation is 
satisfied by the deflections of a vibrating beam whether the 
beam is a cantilever, fixed at one end and free at the other, or 
a highway bridge, held in place at both ends. Likewise, the 
flow of heat in a rod is described by the same equation 
whether the ends of the rod are maintained at constant 
temperatures, insulated, or allowed to cool by radiation into 
the surrounding air, (Ray Wylie & Louis, 2008). 

Of course had we chosen to use polar rather than rectangular 
coordinates to study the vibrations of a membrane or                              
the flow of heat in a thin metal sheet, we would have obtained 
different equations, but again the derivations would not have 
been influenced by any boundary conditions. 

The Benard problem is one of two well-known problems of 
wave dynamics in which R and G are real. The other one is 
the Taylor problem of couette flow between rotating 
cylinders. In most other problems R is complex, and the 
marginal state (R = G = O) contains propagating waves. In the 
Benard and Taylor problem, however, the marginal state 
corresponds to R = O, G = O, and is therefore stationary and 
does not contain propagating waves. In these the onset of 
instability is marked by a transmission from the background 
state to another steady state. In such a case it is commonly 
said that the principle of exchange of stabilities is valid, and 
the instability sets in as a cellular convection. 
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