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Abstract:  We report temperature dependent elastic constants 
(TDECs) and thermodynamic properties of B19 TiZr Shape 
Memory Alloy (SMAs) computed by Quasi-static approximations 
(QSA) as implemented in thermo_pw code.  B19 TiZr is 
mechanically and dynamically stable at zero pressure with lattice 
parameter of 3.110 Å and 1.578 for a and the ratio a/c 
respectively. The first-principles calculations were performed 
within quantum ESPRESSO code.  
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I. INTRODUCTION 

hape memory alloys (SMAs) undergo a transition from 
one phase to another when subjected to external stress or 

temperature change [1].  Temperature, pressure and atomic 
compositions determine the working of SMAs [2]. SMAs 
have several applications which include but not limited to 
surgery implants, actuators, dampers and in construction 
sectors incorporated into intelligent reinforced concrete [3]-
[4]. The TiZr shape memory alloy has been reported as a high 
temperature shape memory alloy (HTSMA) thus attracted the 
interests of researchers [5]. Dental implants comprising TiZr 
shape memory alloys are better than pure Titanium due to 
high strength, especially for applications requiring small 
diameter implants [6]. The B19 phase of TiZr alloy is a hcp 
low temperature structure [7] of a space group P-6m2 (187). 
The TiZr SMA undergoes a reversible martensitic 
transformation from the hexagonal ‘α’ martensite to the cubic 
‘β’ austenite at the start temperature (As) of 871 K and the 
martensitic transformation with the start temperature (Ms) of 
813 K [8]. Previous studies on B19 TiZr SMA have 
investigated the elastic properties mostly at zero pressure and 
temperature. Pressure dependent elastic constants of B19 TiZr 
were reported by Wang et al [9] however, temperature 
dependent elastic constants have not been investigated.  In this 
paper, we computed temperature dependent elastic constants 
(TDECs) and thermodynamic properties of B19 TiZr SMA 
using Quasi-static approximation (QSA) implemented in 
thermo_pw code. The density functional theory (DFT) was 
used to solve the Kohn and Sham equation within the 
Quantum ESPRESSO code [10]. This paper is organized in 
the following sections; section 1; introduction, section 2; 

theory 3; the computational details are given. The results and 
discussion are presented in section 4. Finally, conclusion of 
our results is outlined in section 5.  

II. THEORY 

Quasi-harmonic approximations (QHA) as implemented in 
thermo_pw code can be used to determine the temperature 
dependent elastic properties. QHA involve computing two 
parameters namely second derivative free energy with respect 
to strain and thermal expansion [11]. Helmholtz free energy at 
a constant temperature and volume of any structure of a 
material determined as follows; 

𝐹(𝑉, 𝑇) = 𝐸௦௧௔௧௜௖(𝑉) + 𝐹௘௟௘௖(𝑉, 𝑇) + 𝐹௣௛(𝑉, 𝑇)                 (1) 

𝐹௣௛(𝑉, 𝑇) is the phonon free energy, 𝐹௘௟௘௖(𝑉, 𝑇) refers to the 
thermal free energy due to electronic excitations and  
𝐸௦௧௔௧௜௖(𝑉) is static energy of the lattice at volume V and 
temperature T=0.  

Static lattice energy and thermal free energy are computed by 
first principles static approach directly while QHA is used to 
evaluate phonon free energy as shown in equation (7). 

𝐹௣௛(𝑉, 𝑇) =
ଵ

ଶ
∑ ℏ𝜔௝(𝑞, 𝑉) + 𝑘஻𝑇 ∑ 𝑙𝑛൛1 − 𝑒𝑥𝑝ൣ−ℏ𝜔௝(𝑞, 𝑉)/𝑘஻𝑇൧ൟ௤௝௤௝     

                                                                                              (7) 

𝜔௝(𝑞, 𝑉) is phonon frequency of a jth mode of wave vector q 
in the first Brillouin zone (BZ), ℏ is reduced Planks constant 
(ℎ 2𝜋⁄ ), and kB is Boltzmann constant. 

QHA is computationally more expensive than Quasi-static 
approximation (QSA). QSA is a more simplified method of 
calculating temperature dependent elastic properties which 
assumes thermal dependence mostly on elastic moduli due to 
thermal expansion [11]. In Quasi-static approximations 
implemented in thermo_pw, temperature dependent elastic 
constants are computed in two steps procedure. The first step, 
static elastic constants at 0 K are calculated using stress-strain 
approach. Secondly, the calculated elastic constants in the first 
step at the volume V (T, P) are computed functions of 
temperature. 
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Temperature dependent elastic properties are computed by 
quasi-static approximations as follows; [12] 

𝐶௜௝
்(𝑇) =   ଵ

௏(்)

డమா

డఎ೔డఎೕ
ฬ

ఎୀ଴

                                                   (2) 

V(T) is thermal expansion of the system determined from the 
quasi-harmonic approximation while second derivatives of 
energy with respect to strain are calculated using the static 
internal energy denoted E. 

The Quasi-static approximation brings down cost of running 
computational calculations of temperature dependent elastic 
constants and always it considers the important fraction of 
thermal effects on elastic response of structures. 

Adiabatic elastic constants are larger in most cases compared 
to their corresponding isothermal elastic constants as shown in 
the equation 3 [13]. 

𝐶௜௝
௦ (𝑇) = 𝐶௜௝

்(𝑇) +
்௏ ೔ఒೕ

஼ೡ
                                        (3) 

Where 𝐶௏ = (𝜕𝐸 𝜕𝑇⁄ )௏  and 𝜆௜ = − ∑ 𝛼௝𝐶௜௝
்(𝑇)௝ . 

Therefore, temperature dependent elastic constants for hcp 
symmetry are determined as follows; [14] 

𝐶ସସ
௦ = 𝐶ସସ

்                                                               (4)                                           

𝐶ଵଵ
௦ = 𝐶ଵଵ

் + 𝑇𝑉(𝛽𝐵்)ଶ/𝐶௏                                  (5) 

𝐶ଵଶ
௦ = 𝐶ଵଶ

் + 𝑇𝑉(𝛽𝐵்)ଶ/𝐶௏                                  (6)   

𝐶ଵଷ
௦ = 𝐶ଵଷ

் + 𝑇𝑉(𝛽𝐵்)ଶ/𝐶௏                                  (7) 

𝐶ଷଷ
௦ = 𝐶ଷଷ

் + 𝑇𝑉(𝛽𝐵்)ଶ/𝐶௏                                 (8)                          

Where BT and β are isothermal bulk modulus and volume 
thermal expansion coefficient computed by following 
equations 

   𝐵் = 𝑉(
డమி

డ௏మ)்                                                  (9) 

𝛽 = (
డ௏

డ்
)௣/𝑉                                                      (10) 

Adiabatic bulk modulus BS is calculated as follows;  

𝐵௦ =
஻೅஼೛

஼ೇ
= 𝐵் + 𝑇𝑉(𝛽𝐵்)ଶ/𝐶௏                     (11) 

Where 𝐶௣ is the isobaric heat capacity given by the following 
expression; [12] 

𝐶௣ = 𝐶௏ + 𝑉𝑇𝐵்𝛽ଶ                                                    (12) 

In addition, from quasi-static approximations isothermal and 
adiabatic bulk moduli are computed as follows; [14] 

𝐵் =
஼భభ

೅ ାଶ஼భమ
೅

ଷ
                                                              (13) 

𝐵ௌ =
஼భభ

ೄ ାଶ஼భమ
ೄ

ଷ
                                                              (14) 

III. COMPUTATIONAL DETAILS 

Temperature dependent elastic properties (TDECs) of α-TiZr 
shape memory alloy were computed by Quasi-static 

approximation (QSA) implemented in thermo_pw a post-
processing code of Quantum ESPRESSO (QE). Projector 
augmented wave (PAW) [10] pseudo-potentials were applied 
with Perdew, Burke and Enzorhof (PBE) exchange-correlation 
functional of Generalized Gradient Approximations (GGA) 
[15]. The valence electron configurations for Ti and Zr are 
3d34s1 and 4d35s1. The plane wave cut-off energy was set as 
38.2 Ry since it was sufficient to converge the total energy of 
α-TiZr alloy. K-point meshes of 8×8×6 for the Brillouin zone 
was sampled based on Monkhorst-Pack scheme [16]. The 
dynamical matrices were determined on a 2×2×1 q-point grid 
interpolated on 192×192×192 q-point mesh.    

IV. RESULTS AND DISCUSSIONS 

A. Phase transition 

Both pressure and temperature induced phase transitions were 
determined by comparing the Gibbs and Helmholtz free 
energies of B2 and B19 phases of the TiZr SMA. The 
pressure-induced transition was determined by analyzing 
Gibbs free energies (G) as a function of pressures at zero 
temperature as indicated in Fig. 1. On the other hand the phase 
transition temperature at zero pressure was arrived at by 
studying Helmholtz free energies (Ger) at different 
temperatures as indicated in Fig. 1. The temperature-induced 
phase transition from B19→B2 in TiZr SMA was in the range 
of 790 K and these values were lower than the experimental 
value 813K [8]. 

 

 

 
Fig. 1 (Colour online) Variation of (a) Gibbs and (b) Helmholtz free energy 

with temperature and pressure for hcp and cubic phases of TiZr alloy

(a) 

(b) 
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B. Structural properties 

Optimized geometry of B2 TiZr alloy was determined and 
atomic positions were relaxed at zero pressure and 
temperature. The energy versus volume data was computed 
and plotted as shown in Fig. 2. The equilibrium lattice 
constants were obtained by fitting the energy-volume data to 
the Birch-Murnghan equation of state (EOS) [16]. The plots 
of the total energy versus a and energy versus c/a are shown 
in Fig. 3 (a-b). The computed lattice constants of B2 TiZr 
alloy presented in table 1 are in good agreement with 
previous experimental and theoretical studies at 0 GPa and 
temperature thus the current study is consistency. 

 
                                               (a) 

 

(b) 

Fig. 2 (Colour online)  (a) Energy versus volume plot and (b) energy versus 
a and c/a (inset) plots for hcp  TiZr alloy 

Table 1 Indicates equilibrium lattice parameters and elastic constants of 
hcp TiZr SMA in comparison with experimental and theoretical studies at 

zero pressure and temperature. 

 
B19 

phase 

 
 a (Å) c/a C11 C12 C13 C33 C44 

PBE-
PAW 

 3.110 1.578 159.8 55.5 68.9 169.5 31.0 

EXPT [17] 3.104 1.586 - - - - - 

PBE-PAW 
[18] 

3.104 1.581 140.3 75.4 71.2 170.6 31.8 

PBE-PAW [9] 3.111 1.579 145.1 72.5 70.9 169.0 30.0 

PBE-US [19] 3.104 - 137.7 75.3 67.8 164.0 30.0 

We also noted that the lattice constants of B19 TiZr SMA 
increase with temperature due to thermal expansion of the 
unit cell. For temperatures less than 100K, we observed 
small deviation in equilibrium lattice constant of α-TiZr 
SMA as indicated in Fig. 3 (a-b).

 

 

Fig. 3 shows the variation of equilibrium lattice constants and the ratio c/aof the B19 TiZr SMA with temperature at zero pressure 

(a) 
(b) 
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C. Temperature dependent elastic constants (TDECs) 

Fig. 4 indicates the calculated temperature dependent elastic 
constants of B19 TiZr SMA. It is observed that elastic 
constants of the alloy decrease with increase in temperature 
because thermal expansion softens elastic constants as lattice 
vibration increases. Therefore, the ability of B19 TiZr SMA to 
resist against change in length and shape decreases with 
increase in temperature. The percentage softening of elastic 
constants was evaluated as follows; [20] 

஼೔ೕ(்ୀ଴௄)ି஼೔ೕ(்ୀ଼଴଴)

஼೔ೕ(்ୀ଴)
× 100                                            (15) 

 The obtained percentage softening of the isothermal elastic 
constants were as follows; 5%, 15%, 15%, 9% and 6% for 
C11, C12, C13, C33 and C44. From Fig. 4 it is clear that adiabatic 
elastic constants (in red) are larger than the isothermal elastic 
constants (black) except elastic constant C44 (𝐶ସସ

ௌ = 𝐶ସସ
் ). 

Isothermal bulk modulus also decreases with temperature 
implying that the resistance against volume change declines at 
high temperatures as illustrated in Fig. 4. 

 
 

Fig. 4 shows (a-e) temperature dependent elastic constants Cij and (f) bulk modulus of B19 TiZr SMA at zero pressure. 

 

(a) 

(c) 

(b) 

(d) 

(e) (f) 
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D. Thermodynamic properties 

Thermodynamic properties of the B2 TiZr alloy were 
calculated by the quasi-static approximation implemented in 
thermo_pw code within the temperature range of 0 K to 800 
K. Phonon frequency of B2 TiZr SMA shown in Fig. 2 (e) 

indicates that the alloy is stable dynamically at zero pressure 
due to the absence of the imaginary phonons. The 
relationships between volume thermal expansion and 
temperature, Helmholtz free energy and temperature, 
Grùneisen parameter and temperature, volume and 
temperature are illustrated in Fig. 5 (a-e)

  

(a)                                                                                       (b) 

 

       (c)                                                                                               (d) 

  

(e)                                                                                      (d) 

Fig. 5 Shows the variation of (a) volume, (b) Grùneisen parameter, (c) thermal expansion coefficient (blue/green represents vibrations in xx-directions whereas 
Orange/cyan in zz-directions), (d) Helmholtz free energy and (e) heat capacity at constant pressure Cp of the B19 TiZr alloy with temperature at 0 GPa pressure. 

(f) Indicates the phonon frequency of B19 TiZr alloy at zero pressure and temperature. 
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We observed that the volume B19 TiZr alloy has almost linear 
increase with the temperature however Helmholtz free energy 
decreases non-linearly as shown in Fig. 5 (a-b). Grùneisen 
parameter of B19 TiZr alloy increases rapidly below 300 K 
and gradually remains constant at higher temperatures as 
displayed in Fig. 5 (b). Specific heat capacity at constant 
pressure (Cp) is significant for better description of thermal 
properties [21]. Cp values of B19 TiZr alloy in Fig. 5 (e) 
increases steeply with increase in temperature and later 
remain constant at above 400 K temperature obeying the 
classical Dulong-petit law limit [22]. The coefficient of 
thermal expansion (α) is associated with the asymmetry of the 
thermal vibrations of the atoms [21]. It can be observed that α 
increase with increase in temperature at 0 GPa pressure 
illustrated in Fig. 2 (c). Vibrations along the zz direction are 
greater than in xx-direction.  

V. CONCLUSION 

The lattice constants of the B19 TiZr SMA are in a reasonable 
agreement with experimental and theoretical studies at zero 
temperature. The B19 TiZr SMA is stable mechanically and 
thermodynamically at zero pressure and temperature. The 
elastic constants of B19 TiZr SMA decrease with increase in 
the temperature due to thermal expansion.  
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