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Abstract- In the present study, an unsteady flow of a viscous 

incompressible fluid past a vertical cone with variable viscosity 

and thermal conductivity is studied. The dimensionless form of 

the governing equations for the flow is taken for the study. 

Alternating –Direction-Implicit (ADI) Technique is used to 

obtain numerical solutions of the non-linear differential 

equations governing flow and heat transfer. Flow parameters are 

obtained and are presented graphically. It is observed that 

velocity and temperature of fluid vary considerably with 

viscosity parameter and thermal conductivity parameter  

Keywords- vertical cone, variable viscosity, thermal conductivity, 

Alternating Direction Implicit technique. 

I. INTRODUCTION 

or past many decades, the study of free convection flows 

has been receiving the attention of researchers due to its 

wide applications in engineering and science. Extensive 

analytical and experimental studies are conducted for the 

problem of free convection under varied conditions along 

inclined plane as well as along vertical cone ([1]-[5]).  All 

these studies were conducted with the assumption that the 

viscosity as well as the thermal conductivity of the fluid is 

constant throughout the flow. However, various researches are 

available to study the flow behavior with variations of the 

fluid viscosity and thermal conductivity with temperature. 

Elbashbeshy [6] used shooting method to study a flow of a 

viscous incompressible fluid along a heated vertical plate, 

with variations of the viscosity and thermal diffusivity with 

temperature in the presence of a magnetic field. Seddeek [7] 

investigated a MHD free convection flow past a semi-infinite 

flat plate with an aligned magnetic field in the presence of 

radiation and variable viscosity. Hassanien et al. [8] studied 

the effect of variable viscosity and thermal conductivity on 

combined heat and mass transfer in mixed convection over a 

UHF/UMF wedge in porous media. Abo-Eldabah [9] studied 

a free convective steady laminar boundary layer flow in the 

presence of radiation with variations in temperature-

dependent density, viscosity and thermal conductivity. 

Soundalgekar et al. [10] studied the effect of different 

parameters on an incompressible viscous fluid flow past a 

continuously moving semi-infinite plate with variable 

viscosity and variable temperature. Seddeek & Salem[11] 

presented similarity solutions for laminar mixed convection 

adjacent to vertical continuously stretching sheets, in the 

presence  of variable viscosity and variable thermal 

diffusivity. 

Assuming thermal diffusivity as a linear function of 

temperature, Seddeek and Abdelmeguid [12] studied the 

effects of radiation and thermal diffusivity on heat transfer 

over a stretching surface with a variable heat flux. Mahmoud 

[13] studied the flow and heat transfer of an incompressible 

viscous electrically conducting fluid over a continuously 

moving vertical infinite plate, with uniform suction and heat 

flux in the presence of radiation, taking into account the 

effects of variable viscosity. Saleh M. Al-Harbi [14] analyzed 

the effect of variable viscosity and thermal conductivity  on 

the flow and heat transfer of electrically conducting viscous 

fluid on a continuously stretching surface. He assumed 

thermal conductivity and viscosity to vary as linearly and 

inverse linear functions of temperature, respectively. 

Elgazery[15] used Chebyshev pseudospectral method to study 

magneto-micropolar fluid flow, heat and mass transfer with 

suction and blowing through a porous medium in the presence 

of chemical reaction, Hall, ion-slip currents, variable viscosity 

and variable thermal diffusivity. Assuming fluid viscosity 

and thermal diffusivity  as linear functions of temperature, 

Mukhopadhyay [16] studied the unsteady boundary layer flow 

and heat transfer of a fluid towards a porous stretching sheet. 

Using shooting method numerical solutions were obtained for 

the problem. 

Palani and Kim [17] used Crank- Nicholson scheme to study 

free convection over an isothermal vertical plate immersed in 

a fluid with variable viscosity and thermal conductivity. 

Husnain et al [18] analyzed an unsteady boundary-layer flow 

with heat and mass transfer characteristics of a viscous fluid 

through porous media in the presence of fluid suction or 

blowing taking place at the surface. Animasaun [19] studied 

the effects of thermophoresis, Dufour, temperature dependent 

thermal conductivity and viscosity of an incompressible 

electrically conducting Casson fluid flow along a vertical 

porous plate in the presence of viscous dissipation, nth order 

chemical reaction and suction. Free convection effects on a 

vertical cone with variable viscosity and thermal conductivity 

were studied by Palani et al [20] using Crank- Nicholson 

scheme. 

F 

https://link.springer.com/article/10.1007/s00231-005-0629-6#auth-1
https://link.springer.com/article/10.1007/s00231-005-0629-6#auth-2
https://www.sciencedirect.com/topics/mathematics/chebyshev
https://www.sciencedirect.com/topics/engineering/porous-medium
https://www.sciencedirect.com/topics/physics-and-astronomy/diffusivity
https://www.sciencedirect.com/topics/engineering/thermal-diffusivity
https://www.sciencedirect.com/science/article/abs/pii/S0017931009002890#!
https://www.sciencedirect.com/science/article/abs/pii/S0017931009002890#!
https://www.sciencedirect.com/science/article/abs/pii/S0017931009002890#!
https://www.sciencedirect.com/topics/mathematics/viscous-dissipation


International Journal of Research and Innovation in Applied Science (IJRIAS) | Volume V, Issue VI, June 2020|ISSN 2454-6194 

www.rsisinternational.org Page 29 
 

From these studies, it is clear that adequate studies are not 

available to study the effect of variable viscosity and thermal 

conductivity on a free convection flow of a viscous 

incompressible fluid along an isothermal vertical cone. This 

has motivated the present study. In the present paper, the 

effect of variations of viscosity and thermal conductivity with 

temperature on velocity and temperature profiles is analyzed. 

The fluid viscosity is taken as exponential function and the 

thermal conductivity is taken as a linear function of 

temperature. The dimensionless form of the governing 

boundary layer equations is used and the resulting system of 

equations is then solved by Alternating- direction-implicit 

technique. 

II. PROBLEM FORMULATION 

Consider an unsteady, 2D viscous incompressible fluid flow 

past a vertical cone with variable viscosity and thermal 

diffusivity. The surface of the cone makes an angle θ with the 

horizontal. The local radius of the cone is r  . The X- axis is 

measured along the surface of the cone from the apex  0x 

and the Y-axis is measured normally from the cone to the 

fluid. We assume that at time 𝑡′ ≤ 0, the cone and the fluid are 

at the same temperature. The ambient fluid temperature is T


and at 𝑡′ > 0, the temperature of the cone is 
wT T
  where 

wT   is the temperature of the cone surface. The gravitational 

acceleration is acting downward. In our analysis, the fluid 

properties are assumed to be constant. The effect of viscous 

dissipation is assumed to be negligible. 

Under these assumptions and with application of the 

Boussinesq approximation, the governing conservations 

equations are given by: 

   
0
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The initial and boundary conditions are: 
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where u and v are the velocity components in the x and y  

directions, respectively;   is fluid density, g  is acceleration 

due to gravity , t is time and T  is temperature of the fluid in 

the boundary layer,   is volumetric coefficient of thermal 

expansion,  is the variable dynamic coefficient of viscosity . 

wT   is the temperature far away from the cone surface, 
PC  is 

the specific heat and k is the variable thermal conductivity of 

the fluid. 

The fluid viscosity and thermal conductivity is written in 

terms of dimensionless temperature T as 

0

Te   

        

(5) 

            
 0 1k k T              (6)  

where  and  are the viscosity parameter and thermal 

conductivity parameter respectively and 0 and 0k are the 

dynamic viscosity and thermal conductivity respectively at 

temperature 
wT   

Introducing the non-dimensional quantities 

1/4 1/2

1/4 1/2

2

3
00

2

0

, , ,

( )
, , , ,

( )

( )sin
, , Pr

w

pw

x y u L
x y Gr u Gr

L L

T Tv L t r
v Gr t Gr r T

L L T T

Cg L T T
Gr

k







  


 



 





  
  

    
   

 

 
  

                                                                      

(7)                                        

Where L is the reference length,   is the kinematic viscosity, 

Gr  is the Grashof number, Pr is Prandtl number and 

sinr x    

We can write Eqn. (1)-(3) in non-dimensional form as 

0
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and the initial and boundary conditions (4) as 



International Journal of Research and Innovation in Applied Science (IJRIAS) | Volume V, Issue VI, June 2020|ISSN 2454-6194 

www.rsisinternational.org Page 30 
 

0 :

0 , 0, 0
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t
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t
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III. NUMERICAL TECHNIQUE 

Using Alternating-Direction-Implicit technique, the two 

dimensional, unsteady and non-linear partial differential 

equations given by (8)-(10) under the initial and boundary 

conditions (11) are solved. This scheme consists of two steps 

which splits an unsteady two dimensional problem into two 

separate one-dimensional problems. In first step the difference 

equations are made implicit in 𝑥 at an intermediate time level 

𝑛 +
1 

2
 and the unknowns associated with the 𝑥-derivatives are 

evaluated. The implicit difference equations at the time level 

𝑛 +
1 

2
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Reducing the eqns. (12) - (14) into tri-diagonal form, we 

obtain solution for 
1

2
,

n

i ju


and 
1

2
,

n

i jT


 for all 𝑖, keeping 𝑗 fixed, 

using Thomas Algorithm. This step is repeated for next 

value 𝑗 + 1 and so on. In the end of this step, the values of 
1

2
,

n

i ju


and 
1

2
,

n

i jT


at intermediate time level 𝑛 +
1 

2  
 is known for 

all (i, j). 

In the next step, difference equations are made implicit in 𝑦 at 

time level 𝑛 and the unknowns associated with the 𝑦-

derivatives are evaluated. The implicit difference equations at 

the time level 𝑛 are written as 
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Reducing eqns. (15)-(17) to tri-diagonal form we yield 

solution for
, ,,n n

i j i jv u and 
,

n

i jT  for all 𝑗, keeping 𝑖 fixed, 

using Thomas Algorithm. The calculations are repeated for all 

values of 𝑖 . The values of 
, ,,n n

i j i jv u and 
,

n

i jT at next time 

level 𝑛 is known for all (i, j) at the end of this step. Here, the 

subscript i  in 
, , ,, ,n n n

i j i j i ju v T
 
represents the grid node along 

the x- direction and j  subscript represents the grid node 

along the y- direction.  

The stability of Alternating Differencing Implicit scheme can 

be easily established by employing Von-Neumann Technique 

as done in [21]. 

The domain of integration is assumed to be a rectangular 

region with sides 

                     

0 , 1

0 , 14

x x

y y

 

 
 

where the boundary condition 14y  corresponds to 

conditions at infinity. The mesh size is taken as 

0.05, 0.25x y    with the time step as 0.01t  . 

Computations are performed to make the absolute difference 

between values of both u and T at two consecutive time steps 

as negligible 5( 10 ) .  

VI. STABILITY ANALYSIS 

We examine the stability of differencing scheme by 

employing Von-Neumann Technique. The general term of the 

Fourier expansion for u and T at an arbitrary time t=0 is 
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assumed to be of the form 
iax ibye e  where 1i   . At any 

time t, these can be written as 
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We substitute these in Eqns. (16) and (17). Let us take 
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Eqn. (16) on simplification gives 

 2

2

1 4
sin 1

( ) 2

1 sin( )
sin( )

T T ib yb y T
F e e e

t y y

v u a x
iF b y F i G

y t x

       
     
    

 
     
   

                                                                                 

                                                                              (19)           (19) 

Eqn. (17) on simplification gives 
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Ignoring last term in Equation (20), Equations (19) and (20) in 

matrix form can be written as 
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0
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The stability of the differencing scheme can be established if 

the modulus of each Eigen value of the matrix does not 

exceed unity. The Eigen values for (21) are ( 𝐶/𝐴) and (𝐶/𝐵). 

In first Eigen value 𝐶/𝐴, clearly, the real part of 𝐴 is always 

greater than real part of 𝐶. Therefore,   

                                  
1

C

A


 

Similarly, we can prove that 

                                          
1
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B


 

1
C

B
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Hence, the differencing scheme is unconditionally stable. 

V. RESULT AND DISCUSSION 

Numerical computations were carried out for different values 

of viscosity parameter  and thermal conductivity parameter

 , taking Pr=0.7(air) and 7.0 (water) and applying the 

Alternating direction implicit (ADI) technique discussed in 

section 3. For calculations we take

0.05 , 0.25; 0.01x y t      . The ADI algorithm has 

been implemented in MATLAB programming language. The 

accuracy of numerical results is compared with the previous 

studies available in literature. 

 

Fig. 1: Velocity profile at x=1.0 for Pr=0.7, γ=3 at t=1.5 for different values 

of λ 

 

Fig. 2: Temperature profile at x=1.0 for Pr=0.7, γ=3 at t=1.5 for different 
values of λ 

In Fig.1 and Fig. 2, the transient velocity profile and 

temperature profile are plotted for Prandtl number Pr=0.7 (air) 

of the fluid for γ=3 for different values of λ. In Fig. 1, it can 

be seen that velocity increases to a maximum and then start 

decreasing and finally reduces to zero.   
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Fig. 3: Velocity profile at x=1.0 for Pr=0.7, λ = -0.5 at t=1.5 for different 

values of γ 

 

Fig. 4: Temperature profile at x=1.0 for Pr=0.7, λ = -0.5 at t=1.5 for different 
values of γ 

In Fig. 3 and Fig. 4, the transient velocity profiles and 

temperature profiles are plotted for Prandtl number Pr=0.7 

(air) of the fluid for λ = -0.5 for different values of γ. It is 

observed that an increase in γ results in increase in velocity as 

well as temperature 

 

Fig. 5: Velocity profile at x=1.0 for Pr=7.0, γ=0.05 at t=2  for different values 

of λ 

In Fig. 5 and Fig. 6, the transient velocity profiles and 

temperature profiles are plotted for Prandtl number Pr=7.0 

(water) of the fluid for γ=0.05 for different values of λ. It can 

be seen that velocity increase with increase in λ whereas, 

temperature decreases with increase in λ. 

 

Fig. 6: Temperature profile at x=1.0 for Pr=7.0, γ=0.05 at t=2 for different 

values of λ 

 

Fig. 7: Velocity profile at x=1.0 for Pr=7.0, λ = 0.5 at t=2 for different values 
of γ 

 

Fig. 8: Temperature profile at x=1.0 for Pr=7.0, λ = 0.5 at t=2 for different 
values of γ 

In Fig. 7 and Fig. 8, the transient velocity profiles and 

temperature profiles are plotted for Prandtl number Pr=7.0 

(water) of the fluid for λ = 0.5 for different values of γ. It is 

observed that for Pr=7.0, an increase in γ results in increase in 

velocity as well as temperature. 

VI. CONCLUSION 

An unsteady flow of a viscous incompressible fluid past a 

vertical cone with variable viscosity and thermal conductivity 

is studied in this paper. The dimensionless governing 

equations are solved numerically using ADI technique. The 

conclusions of the study are as follows: 
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1. An increase in γ results in increase in velocity of 

fluid for both values of Pr. 

2. An increase in γ results in increase in temperature for 

both values of Pr. 

3. The velocity of the fluid increase with increase in λ. 

4. The temperature of fluid decreases with increase in λ. 

5. The results obtained are in good agreement with the 

previous studies [20] available. 
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