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Abstract: In this work, we formulate the renormalization group 
(RG) method for global analysis using the classical theory of 
envelope. Actually, what the RG method does is to construct an 
approximate but global solution from the ones with a local 
nature which was obtained in the perturbation theory. Finally, 
we give some applications of theory of envelopes.  
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I. INTRODUCTION 

Most differential equations can not be solved exactly and can 
only be handled by various perturbation or asymptotic 
analysis. This is why perturbation theory and asymptotic 
analysis constitute such an important topic in mathematical 
physics and have applications to various natural sciences [9]. 
Perturbation theory usually refers to collection of iterative 
methods for the systematic analysis of global behaviour of 
differential equations. It usually proceeds by an identification 
of a small parameter, say ϵ, in the problem such that when ϵ = 
0, the problem is exactly solvable. The global solution to the 
problem then can be studied via local analysis about ϵ and 
solution can be expressed by a regular perturbation expansion:  

𝑥(t) = 𝑥0(t) + ϵ 𝑥1(t) + ϵ2 𝑥2(t) + ϵ3 𝑥3(t) + · · · . (0.1) 

Such a series is called a perturbation series where 𝑥n(t) can 
always be computed in terms of 𝑥0, 𝑥1, · · · , 𝑥n−1 as long as 
the ϵ = 0 problem is exactly solvable. Usually when ϵ is small, 
it’s expected that only a few terms of the perturbation series 
are enough for a well approximated solution.  

When the highest order derivative of a given differential 
equation is multiplied by a small parameter, ϵ, then the 
equation lead to narrow regions of rapid variation called 
boundary layers. Such cases constitute yet another class of 
problems where regular perturbation theory fails. In cases 
where the small parameter, ϵ → 0, boundary-layer techniques 
can be employed.  

The recently developed of renormalization group (RG) 
method introduced by [1], opened a new direction of research 
in non-linear dynamics. They showed that RG can be used as 
that global and asymptotic analysis tool for ODEs and PDEs. 
What makes the method so powerful is it starts with a regular 
perturbation expansion and substitutes in the equation, then 
uses the renormalization transform that will deals with the 
secular terms and applies RG condition to obtain a valid 
solution. 

 

II. THEORY OF ENVELOPES 

Let {CT }T be a family of curves with parameter T in the 𝑥, y 
plane, where CT is represented by the equation  

f(𝑥, y, T ) = 0.      
 (0.2) 

Now we assume that the family of the curves has an envelops 
E which is also in the form  

G(𝑥, y) = 0.      
 (0.3)  

Our aim is to obtain G(𝑥, y) from f(𝑥, y, T ). Suppose that 
both E and a curve CT0 have the same tangent line at (𝑥, y) = 
(𝑥0, y0), i.e., (𝑥0, y0) is the point of tangency. This implies that 
𝑥0 and y0 are functions of T0 which can be express as 𝑥0 = 
Φ(T0), y0 = Ψ(T0), and G(𝑥0, y0) = 0. Conversely, for every 
point on E, say (𝑥0, y0), there exists a parameter T0. Now we 
can get T0 as a function of (𝑥0, y0) and G(𝑥, y) can be express 
as  

f(𝑥, y, T (𝑥, y)) = G(𝑥, y).  

Since 𝑥0 and y0 are both functions of T0, then T0 (𝑥0, y0) can 
be obtained by defining the tangent line of E at point (𝑥0, y0) 
and that of CT0 at the same point.  

For E  at point (𝑥0, y0) is :       Ψ(T0)(𝑥 − 𝑥0) − Φ(T0)(y − y0) = 
0 and 

For CT0 at point (𝑥0, y0) is :        F𝑥(𝑥0, y0, T0)( 𝑥 − 𝑥0) + 
Fy(𝑥0, y0, T0)(y − y0) = 0,  

Where both F𝑥 and Fy are partial derivatives of F with respect 
to 𝑥 and y respectively. But since they are at the same point, 
then the above equations must produce the same line as well. 
Therefore, we have  

F𝑥 (𝑥0, y0, T0)Φ(T0)  +  Fy(𝑥0, y0, T0)Ψ(T0) = 0. 

Similarly, if we differentiate the function F(𝑥(T0), y(T0), T0) = 
0 partially with respect to parameter T0, we get  

F𝑥(𝑥0, y0, T0)Φ(T0) + Fy (𝑥0, y0, T0)Ψ(T0) + FT0 (𝑥0, y0, T0) = 
0, 

then   FT0 (𝑥0, y0, T0)   is identical to

 
( , , )

 
   = 0, that is ,  

FT0 (𝑥0, y0, T0)  ≡ 
( , , )

 
   =  0. 
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To get the relation between 𝑥0 and y0, we eliminate the 
parameter T0, and by transforming  

(𝑥0, y0) → (𝑥, y)         we get    
 G(𝑥, y) = F(𝑥, y, T0 (𝑥, y)) = 0.  

If 𝑥 = g(y, T) is the family of curves, then 
( , , )

 
  = 0 

implies 
 
   = 0, where the envelope is 𝑥 = g(y, T0(y)).  

Also, we can get both E and a set of singularities of the curves 

{CT }T  from the equation G(𝑥, y) = 0 since 
 
  = 

 
 = 0 

satisfy   
( , , )

 
   = 0.  

Application of the Envelope  

In order to see what this envelope is all about, let’s look at a 
function that is bounded local but not globally.  

Consider the function.    

 𝑥 = g(y, T) = 𝑒  (𝜖 (y − T) − 1) + 𝑒  

Clearly this function is bounded locally i.e when ϵ = 0. For y-
T →  then g(y, T) is unbounded. We can now get the 

envelope E of the given curve CT from the condition  = 0.  

Now      =  𝑥T = −ϵ2 𝑒  −  ϵ2 𝑒  (ϵ2(y − T) – 1)  = 0, 

this implies that  

y = T 

Where the parameter  T  is on the y-coordinate of the point of 
tangency of the curves, CT and envelope E. This implies that 𝑥 
= g(y, y) =  𝑒  - 𝑒  and this envelope is bounded even 
for y → . Hence, g(y, y) = 𝑒  - 𝑒   is an envelope with 
global nature derived from the curves, g(y, T) that bounded 
only locally.  

BVP using Theory of Envelopes  

Let’s consider the equation in [10] which is the second order 
linear differential equation of the form   

𝜖 
𝓍

+  
𝓍

 +  𝜖
𝓍

 + 𝜉 = 0   (0.4)  

Equipped with boundary conditions ξ(0) = 0 and ξ(1) = 1.  

This can be interpret as a boundary-layer problem. Using the 
[10], we obtained the exact solution as  

 𝜉(𝑥) =
   

   

    (0.5)  

Next is to assign the variable 𝜒 = 𝜖X and ξ(x) = Y (X), which 
when differentiate we get  

  =    and   =  
𝓍

   

Substitute this relations in Equation (0.4) , then it becomes    

𝜖
1

𝜖
  

𝑑 𝑌

𝑑𝑋
+ (1 +  𝜖)

1

𝜖
  

𝑑𝑌

𝑑𝑋
+ 𝑌 = 0 

which gives  

  +   = −𝜖  + 𝑌     (0.6) 

Then we apply the naive perturbation expansion  

Y (X) = Y0(X) + 𝜖Y1(X) + 𝜖 Y2(X) + · · ·   (0.7) 

 to the Equation (0.6) , to obtain  

Ϋ0 + Ϋ1 + · · · Ẏ0 + Ẏ1 + · · · = −(Ẏ0 + Ẏ1 + · · · + Y0 + Y1 + · 
· ·).    (0.8)  

After equating the corresponding orders of ϵ, we get  

O(1) : Ϋ0+ Ẏ0 = 0     (0.9) 

O(ϵ) : Ϋ1 + Ẏ1 = −( Ẏ0  + Y0), and so on   (0.10) 

with the boundary condition Y (X) = Y0(X0) = A0  (0.11)  

for any arbitrary constant X0 and A0 as function of X0. The 
solution of (0.9) is  

Y0(X) = A + Be−X 

and by applying the boundary conditions we have  

Y0(X) = A0 − 𝐵0𝑒 ( ).    (0.12)  

For the second Equation of (0.9), we have the solution  

Y1(X) = −A0(X − X0) − (B0 + C0) 𝑒 ( ) − 1).  (0.13)  

By substituting Equations (0.12) and (0.13) in (0.7), we obtain 
the curves describe as  

Y (X, X0) = A0 − B0𝑒 ( ) − ϵ 𝐴 (𝑋 − 𝑋 ) +

 (𝐵 + 𝐶 )𝑒 ( ) − 1) 

Now we are to define the renormalization constants A and B 
such that A0 and B0 would be absorb from the above curves. 
This can be seen as  

A = A0 + ϵ(B0 + C0)  

B = B0 + ϵ(B0 + C0) 

this implies that Y (X, X0) = A − B𝑒 ( )− ϵA(X − X0) + 
O(ϵ2).     (0.14) 

By changing Equation (0.14) in to the given coordinate, we 
obtain  

ξ(𝓍, 𝓍 ) = A − B𝑒
( )

𝓍   − A(𝓍, 𝓍 ) + O(ϵ2), 

because of the relation  𝓍 =  𝓍  . Note that, the family of 
functions is  {Y (X, X0)}𝑥  . Now we can derive the envelope 
YE(X) from {Y (X, X0)}𝑥  and both has the common tangent 
line at X = X0. To do that, we use the condition derived in the 
previous section,  

   = 0      (0.15)  
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where Y (X, X) will be the envelopes, YE(X). Using condition 
(0.15) in the Equation (0.14), we get  

=   – B𝑒 ( ) -  𝑒 ( ) + ϵA - ϵ (X – 

X0)   = 0 

 + ϵA = 0 and  + B = 0    (0.16)  

using separation of variables, yields  

A(X) = αe−ϵX and B(X) = βe−ϵX 

where α = eϵ1 and β = eϵ2 are constants. This implies that, 
Equation (0.14) becomes the required envelope in form  

YE(X) = Y (X, X) = A(X) − B(X) = αe−(ϵX) − βe−X  (0.17) 

And in terms of the given unknown the envelope becomes  

ξE(𝓍) = αe−x − β𝑒     (0.18)  

with boundary conditions ξ(0) = 0 and ξ(1) = 1. To obtain α 
and β,  

ξ( ) = αe−(0) − β𝑒   = 0  α = β and    (0.19)  

ξ(1) = αe−(1) − β𝑒     = 1 and by using (0.19) we get αe−(1) − 

α𝑒   = 1, i.e., 

α = 
∈

   (0.20) this implies  

α = β = 
∈

  . Therefore,  ξE(𝓍) = 
𝓍

𝓍
∈

∈

 

Hence, the envelope ξE (𝓍) coincides with the exact solution 
ξ(𝓍) i.e., equation (0.5), and satisfy both the inner and outer 
boundary conditions together. 

 
Figure 1: This is the graph solutions of exact (0.5) and RG method (0.18) 

using theory of envelope to second order linear differential equation (0.4) for 

small parameter,  ϵ= . 

Concluding Remarks In this work, we discussed how the 
Renormalization Group methods works in approximating the 
solution of differential equation using theory of envelopes and 
we show logically how the secular terms that arise in the naive 
perturbation expansion can be eliminate using 
“renormalization transform ”. By this method of RG, we 
obtained detailed analytical results for singularly perturbed 
problems and compare then with the exact solution of the 
same problem.  

Renormalization Group Method is clear in theory but difficult 
in practice. It is no doubt that the proposed method can be 
applied to many linear and nonlinear differential equations. 
For the future work, we want to propose how to apply this 
method in wireless market intelligence as it’s described in 
[11]. Finally here is a question left to a reader. Can you 
reformulate the undamped nonlinear oscillator described by 
Duffing’s equation . 

( )
 + 𝑥 (t) + ϵ 𝑥 (t)3 = 0 

Using theory of envelopes up to including order O () and what 
can you deduce?.  
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