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Abstract: In this work, mathematical epidemiological model for 

the transmission dynamics of Cholera with control strategies is 

presented and analyzed. The model formulated is designed into 

compartments which lead to a system of differential equations 

for the transmission dynamics of Cholera with control measures 

of water treatment, sanitation and education based intervention 

being proposed. It was assumed that in the model, Cholera is 

contracted when an individual comes into contact with and 

ingestion of contaminated water, food and unhygienic 

environment. The stabilities of the model are investigated at 

several instances. The results showed that the disease free 

equilibrium is locally asymptotically stable under assumed 

conditions on the parameters given in the model. It was then 

concluded from the results that treatment of water, with good 

sanitation and well based education are effective methods of 

controlling and eradicating Cholera when kept consistent. 

Keywords: cholera, equilibrium, control strategies, stability. 
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I. INTRODUCTION 

holera is one of the most devastating infectious diseases 

in the world, infecting millions of people annually and is 

a major cause of mortality. It is an infectious disease that is a 

major concern in countries with inadequate access to clean 

water, proper sanitation and good health facilities. Cholera is 

an acute bacterial infection caused by Vibro-cholerae, non-

invasive bacterium called Vibro or the “Comma bacillus 

“which lives in the small intestine [Ι]. It was discovered by 

Robert Knoch in 1883 during a Cholera outbreak in Egypt, 

which can be transmitted directly from human to human 

through unhygienic contact with Cholera patient’s faece, 

vomit or corpse and indirectly from environment to human 

through ingestion of Vibro cholera bacteria from 

contaminated water and food [2, 12, 13]. The bacteria can 

brew in someone’s system for up to twelve days before the 

person develops diarrhea, which can lead to dangerous 

dehydration. Most degeneration occur on the first day of 

illness and if not properly and immediately managed can lead 

to death [3]. 

Cholera has been a persistent epidemic and continues to be a 

global world health issue. Despite the studies on this disease 

for over one hundred years, it is estimated that approximately 

120,000 people die from Cholera annually [4, 5, 6] and the 

dynamics of the disease indicate that it is intimately linked to 

serious inadequate access to clean water, improper treatment 

of human wastes and lack of access to essential health 

services. 

Most cases of Cholera currently occur in developing 

countries. Currently, Cholera is endemic in India and 

Bangladesh near the Bay of Bengal as well as in coastal 

regions of South America [7]. Cases in these regions tend to 

have seasonal circles, generally associated with fluctuations in 

water temperature, zooplankton levels and monsoon cycles 

[8]. These epidemics tend to coincide with dry weather and 

higher water temperatures while cases are reduced in winter. 

In 2005, Nigeria had 4,477 cases and 174 deaths. There were 

reported cases of Cholera in 2008 in Nigeria in which there 

were 429 death cases out of 6,330 cases. 2,304 cases were 

reported in Niger State in which 114 were death cases [6]. 

Also in 2009, Nigeria reported 13,691 cases and 431 deaths 

[5, 7, 14]. Preventative measures include vaccination, drinking 

of clean water, and washing hands well- all of which is 

assumed that people have easy access to these resources but 

since most existing models exclude the use of education based 

intervention in passing down the aforementioned strategies in 

fighting against the propagation of infectious diseases, this 

work is aimed to better understand the effects of this measure 

so as to gain useful guidelines to the effective prevention and 

intervention strategies against Cholera epidemics. 

II. MODEL FORMULATION 

In this study, we consider the SIRP epidemiological model for 

Cholera transmission by making reasonable improvement on 

the work of Fatima and Isthrinayagy [8] with the 

incorporation of human treatment, water hygiene, 

environmental sanitation and education based intervention 

which is assumed to be the control strategies. Consequently, 

we introduce another compartment into the model: the 

concentration of Vibrio-cholera in water at time (t) denoted by 

Cᴠ t .  Let Sʜ  t , Iʜ   t , Rʜ  t  and Pʜ (t) represent the 

susceptible, the infected, recovered and the protected human 

populations respectively. The total human NH t = Sʜ +  Iʜ +
Rʜ + Pʜ  is closed, which is a reasonable assumption for a 

relatively short period of time and for low mortality diseases 

like Cholera. 

The Susceptible population is generated either through birth 

or through immigration at rate Λʜ.They acquire infection and 

move to infected class at the rate: 

C 
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α =
q1CV

CV +K
+  q2IH                                                          (1) 

Where 𝑞1𝑎𝑛𝑑 𝑞2 = rates of ingesting Vibro-cholera from the 

contaminated water and through human to human interaction 

respectively. 

Cv =Concentration of Vibro-cholera in contaminated water. 

K = Concentration of Vibro-cholera in water that yields 50% 

chance of getting it. 

IH  = Total number of infected individuals. 

The number of infected individuals decreases through natural 

recovery from the disease at the rate of βH  and ZH  is the 

recovery due to the use of treatments. μH is natural death of an 

individual anddH  is the death rate induced by the disease. ρHIs 

the loss rate of immunity by the recovered individuals, ɛ is the 

rate of contribution of each infected person to the population 

of Vibro-cholera in the aquatic environment. ⱷ is the net death 

rate of Vibro-cholera gotten by ⱷ = m – n, where m is the 

Vibro-cholera growth rate and n is the Vibro-cholera loss rate. 

Variables 

SH  = Total number of susceptible individuals.  

IH  = Total number of infected individuals. 

RH  =Total number of  recovered individuals. 

PH  = The human population called the protected population. 

NH  =Total population of humans. 

CV= Concentration of Vibro-cholera in contaminated water. 

Parameters 

Symbols Definitions 

𝛬𝐻 Per capital birth rate of humans. 

𝜇𝐻 Per capital natural death rate of humans. 

𝑑𝐻 Cholera induced death rate. 

𝛼𝐻 Rate of exposure to contaminated water. 

𝜌𝐻 Loss rate of immunity by recovered individuals. 

𝛽𝐻 Natural recovery rate. 

 

Rate of contribution of each infected person to the 

population of Vibro-cholera in the aquatic 

environment. 

𝑧𝐻  
Recovery due to the use of antibiotics in the aquatic 

environment. 

M Vibro-cholera growth rate. 

N Vibro- cholera loss rate. 

 Net death rate of Vibro-cholera ie m-n. 

𝛾𝐻 Rate of exposure to education and its compliance. 

𝜂 Rate of death of Vibro-cholera as a result of water treatment. 

K 
Concentration of Vibro-cholera in water that yield 

50% chance of getting it. 

𝑞1and𝑞2. 

Rates of ingesting Vibro-cholera from the 

contaminated water. 

 

2.1 The Compartmental Diagram 

The model assumptions are as follows: 

a. Susceptible individuals acquire Cholera at a constant 

rate. 

b. The death in the Infectious class is not only due to 

the infection but also natural. 

c. Water treatment leads to the death of the Vibro-

cholera. 

d. All parameters are considered non- negative. 

The following diagram illustrates the compartmental flow 

diagram. 

 

 

 

 

 

  

 

 

 

 

From the analysis and assumptions the following system is 

obtained: 

dS H

dt
= ΛH + ρH RH −  μH + γH SH −

q1CV

CV +K
SH − q2IHSH     (2) 

dI H

dt
=

q1CV

CV +K
SH + q2IH SH −  μH + dH + βH + zH + ε IH    (3) 

dR H

dt
= βH RH + zH RH − μH RH − ρH RH                              (4) 

dP H

dt
= γH SH − μH PH                                                            (5) 

dC V

dt
=  εIH − (φ + η)CV                                                      (6) 

Invariant Region: All state variables remain non-negative all 

the time such that 

SH 0 ≥ 0, IH 0 ≥ 0, RH 0 ≥ 0, PH 0 ≥ 0, CV ≥
0. and𝑞1 > 𝑞2                                                                                (7) 

2.2        Existence of solution 

The following theorem validates the existence of solution of 

the above models 

Theorem 2.1 Derrick and Groosman [10]. 

Given IV  Px′ = f t, x ,   x t0 = x0                             (8) 

Let 𝐃 denotes region  t − t0 ≤ a,  x − x0 ≤ b, x =
(x1, x2, … , xn)  and suppose that f(t, x)  satisfies the Lipchitz 

condition 

𝑃𝐻  𝜇𝐻  

SH 

𝛾𝐻  


𝐻  

Λ𝐻  𝛼𝐻𝐼𝐻𝑆𝐻  
𝐼𝐻  

𝛽𝐻 + 𝑧𝐻  
𝑅𝐻  

𝜀 𝜇𝐻 + 𝑑𝐻  𝜇𝐻  

𝐶𝑉  

𝜑 

𝜌𝐻  

𝜂 
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 f t, x1 − f(t, x2) ≤ k x1                                               (9) 

Whenever the pairs  t, x1 and(t, x2) belong to𝐃, wherek is a 

positive constant. Then, there is a constant δ > 0 such that 

there exists a unique continuous vector solution x(t) of the 

system in the interval |t − t0| ≤ δ .  T he condition (9) is 

satisfied by the requirement that 
∂fi

∂xj
, i. j = 1,2, … , n be 

continu0ous and bounded in D. 

Theorem 2.2 (Uniqueness of solution) [9, 15, 16] 

Let 𝐃 denotes the region defined by 1 ≤ ε ≤ R such that0 <
𝑅 < ∞ ,hold, then the solution of (2)-(6) is unique and 

bounded in the region𝐃.  

Proof 

Let 

f1 =∧H + ρH RH −  μH + γH SH −
q1CV

CV +K
SH − q2IHSH.   (10) 

f2 =
q1CV

CV +K
SH + q2IHSH −  μH + dH + βH + ZH + ε IH.   (11) 

f3 = βH RH + ZH RH − μH RH − ρH RH.                  (12) 

f4 = γH SH − μH PH                      (13) 

f5 = εIH − (φ + η)CV                  (14) 

It suffices to show that 
∂fi

∂xj
, i, j = 1,2, … .5 are continuous. 

Consider the partial derivatives: 

Forf1; 

 ∂f1 ∂SH  =  − μH + γH  . 

 ∂f1 ∂IH  = 0 < ∞ =  ∂f1 ∂RH  =  ∂f1 ∂PH  =  ∂f1 ∂CV  . 

Similarly; 

 ∂f2 ∂IH  = | −  μH + dH + βH + ZH + ε |. 

 ∂f2 ∂SH  = 0 < ∞ =  ∂f2 ∂RH  =  ∂f2 ∂PH  =  ∂f2 ∂CV  . 

Similarly; 

 ∂f3 ∂RH  =  βH + ZH − μH − ρH  . 

 ∂f3 ∂SH  = 0 < ∞ =  ∂f3 ∂IH  =  ∂f3 ∂PH  =  ∂f3 ∂CV  . 

Similarly; 

 ∂f4 ∂PH  = | − μH |. 

 ∂f4 ∂SH  = 0 < ∞ =  ∂f4 ∂IH  =  ∂f4 ∂RH  =  ∂f4 ∂CV  . 

Finally; ∂f5 ∂CV  = | − φ|. 

 ∂f5 ∂SH  = 0 < ∞ =  ∂f5 ∂IH  =  ∂f5 ∂RH  =  ∂f5 ∂PH  . 

It is clearly seen that the partial derivatives are continuous and 

bounded, implying that the solutions for (2)-(6) exists and are 

unique in the region D. Thus, the proof is complete. 

 

2.3       Equilibrium state of the model 

To show the disease-free equilibrium for the system (2)-(6), 

here, setting
NH

dt
= 0, implying 

dSH

dt
=  

dIH

dt
=  

dRH

dt
=

dPH

dt
=

dCV

dt
= 0 

For disease-free state, 

IH = RH = CV = 0.  

So that (2)-(6) has a disease free equilibrium state of the form: 

E0 =  SH , IH , RH , PH , CV =  
∧H

μH +γH
, 0,0,

γH ∧H

μH (μH +γH )
, 0      (15) 

2.4 Estimation of the Basic Reproduction Number  

The basic reproduction number denoted by R0is an important 

parameter used to study the behavior of epidemiological 

model,this is defined as the expected number of secondary 

cases produced in a completely susceptible population, by a 

typical infective individual.  This is a threshold that 

determines whether or not; an infection will spread through a 

given population.  

n = 1, m = 3 so that x =  IH , Y =  SH + RH + PH  

Where 

X =   x1, x2, … , xn  represents n
− infected host compartments. 

Y =  y1, y2 , … , yn  represent m
− other host compartments.   

dx i

dt
= Fi x, y − Vi x, y ,  i = 1, … , n,

dy j

dt
= Gj x, y , j =

1, … , m 

Fi = rate at which new infected enter compartment i. 

Vi= rate at which transfer of individuals out of and into ith 

compartments.  

dx

dt
= F x −  V x  

Fi = (
q1CV

CV + K
+q2IH)SH ;    Vi =  μH + dH + βH + ZH + ε IH  

G1 =  ⋀H − ρH RH − (μH + γH +
q1CV

CV + K
+ q2IH )SH  

G2 =  βH + ZH RH − (μH + ρH )RH  

G3 = γH SH − μH PH  

F =  
q2SH

q1KSH

(CV +K)²

0 0
 (16) 

V =  
μH + dH + βH + ZH + ε 0

ε (φ + η)
        (17) 
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R0 = FV−1

=   
q2SH

q1KSH

(CV + K)²
0 0

 

 

 
 

1

μH + dH + βH + ZH + ε
0

ε

(μH + dH + βH + ZH + ε)

1

(φ − η)
 

 
 

 

The reproduction number with control measure is given as: 

R0 =  
q1kSH

 CV +k ² φ+η 
                         (18) 

if R0 < 1 ⇒Asymptotically stable,R0 > 1 ⇒ unstable. 

III. LOCAL STABILITY OF THE DISEASE-FREE 

EQUILIBRIUM (DFE) 

In what follows, the local stability of the DFE is established  

Theorem 3.1[15, 16, 17] 

The disease free-equilibrium of (2)-(6) is locally 

asymptotically stable ifR0 < 1and unstable otherwise. 

Proof 

The variational (Jacobian matrix) of the system formed by (2)-

(6) at E0 =   
∧H

μH +γH
, 0,0,

γH ∧H

μH (μH +γH )
, 0  is given by: 

∂f1

∂SH

= − μH + γH ,

∂f1

∂IH

=  − q2SH ,        
∂f1

∂RH

=  ρH ,
∂ƒ1
∂CV

=  
q1KSH

(CV + K)²
 

∂f2

∂SH

=   
q1CV

CV + K
+q2IH ,

∂f2

∂IH

= q2SH −  μH + dH + βH +  ZH + ε ,  

∂ƒ2

∂CV

=    
q1KSH

(CV + K)²
,    

∂f3

∂RH

= βH + ZH − μH − ρH  

∂f4

∂SH

=  γH ,
∂f4

 ∂PH

= −μH  

∂ƒ5

∂IH

= ε,    
∂f5

∂CV

= −(φ + η) 

    

At disease free state E0: 

 

 
 
 
 
 

− μH + γH 
−q2ΛH

μH + γH

ρH 0 0

0
q2ΛH

μH + γH

−  μH + dH + βH + zH + ε 0 0 0

0 0 βH + zH − μH − ρH 0 0
μH 0 0 −μH 0

0 ε 0 0 − φ + η  

 
 
 
 
 

 

The characteristic equation using  A − 1λ , we obtain 

− μH + γH + λ 
 

 

q2ΛH

μH + γH

−  μH + dH + βH + zH + ε + λ 0 0 0

0 βH + zH − μH − ρH − 𝜆 0 0
0 0 −(μH + 𝜆) 0

𝜀 0 0 − φ + η + λ 

 

 
= 0 

 

 

From which the following eigenvalues are obtained λ1 =
− μH + γH  , λ2 = −μH , λ3 =  φ + η ,   λ4 =  βH + ZH −
μH − ρH  

So that 

 
q2∧H

μH +γH
−  μH + dH + βH + ZH + ε  < 0                                                                                  

(19) 

so that 

Dividing both side of (19) by  μH + dH + βH + ZH + ε we 

obtain  

𝑞2∧𝐻

(𝜇𝐻 +𝛾𝐻 )(𝜇𝐻 +𝑑𝐻 +𝛽𝐻 +𝑍𝐻 +𝜀)
< 1                                    (20) 

Biologically, by Theorem 3.1, cholera can be removed from 

the community (when R0 < 1)  if the initial mass of the 

population of the model are in the basin of attraction of 𝐸0. To 

ensure that elimination of cholera is independent of the initial 

sizes of the populations. It is necessary to show that the 

disease-free equilibrium is globally asymptotically stable. 
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IV. CONDITIONS FOR GLOBAL STABILITY OF THE 

DISEASE FREE-EQUILIBRIUM. 

In this section, conditions that if met, guarantee the global 

asymptotic stability of the disease free state are listed. Set the 

model equation in the form: 

𝑑𝑥

𝑑𝑡
= F X, Z (21) 

dz

dt
= G X, Z ,   G X, 0 = 0. 

Where X ϵ Rm  denotes the number of uninfected individuals 

and Z ∊ Rn denotes the number of /infected individuals 

including the latent, infectious etc.U0 =  x∗, 0   denotes the 

disease free equilibrium of this system. 

The conditions (H1) and (H2) below must be met to guarantee 

local asymptotic stability. 

(H1)
dx

dt
= F X, 0 ,  x∗ is globally asymptotically stable. 

(H2)G(X, Z) = AZ − Ĝ X, Z ,    Ĝ(X, Z) ≥ 0  for X, Z  ϵ Ω. 

Where  A =
∂G

∂Z
 X∗, 0  is an M-matrix (the off diagonal 

elements of Aare nonnegative) and Ω is the region where the 

model makes biological sense. 

Then the disease free-disease equilibrium x0 = (X∗, 0)  is 

globally asymptotically stable provided that R0 < 1. 

Let 

X = (SH , RH , PH),  Z =  IH , CV T  

F X, 0 =  

ΛH −  μH + γH SH

𝑅𝐻 𝛽𝐻 + 𝑍𝐻 − 𝑅𝐻 𝜇𝐻 + 𝜌𝐻 
γH𝑆𝐻 − 𝜇𝐻𝑃𝐻

  

Checking out for linearity ofF(X, 0), we obtain:  

SH t = e−  μH +γH  dt
t

0 (SH 0 +  ɅH e  μH +γH  dt
t

0 ds),
s

0

RH

= RH (0)e   βH +ZH  − μH +ρH   dt
t

0  

𝑃𝐻 𝑡 = 𝑒 μH 𝑑𝑡
𝑡

0 (𝑃𝐻 0 +  γH𝑆𝐻
𝑠

0
𝑒 μH 𝑑𝑡

𝑡
0 𝑑𝑠). 

Next we show that condition (H2) is less than or equal to zero 

as follows: 

G X, Z 

=  

q1CV

CV + K
SH + q2IH SH − (μH + dH + βH + zH + ε)IH

εIH − (φ + η)CV

  

AZ =  
q2SH − (μH + dH + βH + zH + ε)

q1KSH

(CV + K)²
ε −(φ + η)

  
𝐼𝐻
𝐶𝑉

  

Ĝ =  

K

(CV + K)²
0

  

Here, 𝐾 > 0 . Clearly, 
K

(CV +K)²
> 0 , so that Ĝ ≥ 0 , thus 

satisfying H2. It is also clear that 𝑥∗ is a g.a.s equilibrium if 
𝑑𝑥

𝑑𝑡
=  𝐹(𝑥, 0). Hence, by the above theorem 𝑈0is g.a.s. 

Table 2: Parameter, Description, Value and Reference. 

Parameter Description Value Reference 

𝛬𝐻 Per capital birth rate of humans. 0.500(day−1) 14 

𝜇𝐻 
Per capital natural death rate of 

humans 
0.021(day−1) 14 

𝑑𝐻 Cholera induced death rate 0.480(day−1) 10 

𝛼𝐻 
Rate of exposure to contaminated 

water 
0.500 11 

𝜌𝐻 Immunity waning rate 0.414(day−1) 11 

𝑧𝐻  
Rate of recovery of individuals 

due to treatment 
0.550(day−1) 11 

𝛽𝐻 Natural recovery rate 0.020(day−1) 13 

Η 
Death rate of vibro cholera due to 

water treatment. 
0.020 13 

Ε 
Rate of contribution of each 

infected person 
0.150 13 

Φ Netdeathrate of Vibro cholera 0.033 10 

𝛾𝐻 
Rate of exposure to education 

and its compliance 
0.800 Estimated 

𝑞1 and 𝑞2 
Rates of ingestion of Vibro 

cholera 
0.017(𝑑𝑎𝑦−1) 14 

Η 
Death of Vibro cholera due to 

water treatment 
0.250 Estimated 

𝑑𝐻 Disease induced death rate. 
0.048 

(𝑑𝑎𝑦−1) 
14 

𝑆𝐻(0) 
Susceptible individuals in the 

population 
1000 Estimated 

𝐼𝐻(0) 
Infected individuals in the 

population 
100 Estimated 

𝑁𝐻  Total human population 1100 Estimated 

𝐶𝑉  
Concentration of Vibro cholera 

in water 
0.002 13 

K 
Half saturation of Vibro cholera 

in water 
100 10 
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The graph of education based intervention on a population 

prone to cholera at time t. 

V. RESULT AND DISCUSSION 

Numerical results of this model are in a graph form. Using 

parameter values stated in table 2, matlab software(ode45) 

was used to run the test and the graph below which shows that 

proper enlightenment on personal hygiene, environmental 

sanitation and water treatment on the population prone with 

cholera disease will reduce the spread of the infection thereby 

bringing the population to a healthy state. 

We noticed from the graph that when the population is 

exposed and well educated on the do’s and don’ts to imbibe, 

the recovery rate of the infected humans grows exponentially 

leading to a drastic reduction on the number of people 

infected with the disease and on the concentration of the 

vibro- cholera bacteria in the environment. With this, the 

protected humans who are knowledgeable are not dragged 

into the struggle of living right since the understand it’s effect. 

Consistency on this practice eventually leads to gradual dying 

out of the disease, bringing the population to a healthy state. 

VI. CONCLUSION 

In this research work, we modeled education base intervention 

as an added control measure alongside with water treatment 

and environmental sanitation in the dynamics of Cholera in 

humans, there exists a disease free-equilibrium state E0 =

 SH , IH , RH , PH , CV =  
∧H

μH +γH
, 0,0,

γH ∧H

μH (μH +γH )
, 0 . From the 

findings, the equilibrium point is stable when R0 < 1 , and 

unstable when R0 > 1.  Showing that the control 

recommended will help to eradicate the emergence of new 

infectious disease.  

This research work extends the model of Fatima and 

Isthrinayagy Krishnarajah, 2014)by bringing in the education 

based intervention measure. We proved the existence of the 

model and it having a unique solution. Using the next 

generation matrix method, we determined the basic 

reproduction number 𝑅0 . We showed that the disease free 

equilibrium is locally asymptotically stable when 𝑅0 < 1 

causing the disease to disappear. Numerically we proved that 

educating the people should not be a program that should be 

done skeletally but with intense responsibility so as to achieve 

effectiveness in curbing cholera from any population under 

the invasion. 
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