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Abstract: This work centres on non-near-linear finite geometry. 

In it, lines in 𝒁(𝒃) × 𝒁(𝒃) for factorized as lines of   𝒁(𝒑𝒋) ×𝒌
𝒋=𝟏

𝒁(𝒑𝒋), where 𝒑𝒋′s are primes and 𝒑𝟏,𝒑𝟐,…,𝒑𝒌 are relatively 

prime. Using the method of Good[18] which was built on Chinese 

remainders theorem, an isomorphism was established 

between𝑮(𝒃) for 𝒃 a non-prime and  𝑮(𝒑𝒋)
𝒌
𝒋=𝟏  where 𝒑𝒋 is a 

prime. 
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I. INTRODUCTION 

inite geometry had received a lot of attentions from 

researchers of different discipline in recent past. The 

reason could be connected to its relevant in emerging 

technology like the quantum information and teleportation [1-

10]. Over the years,most of the work done on finite geometry 

centres on near-linear geometry. In more recent times non-

near-linear finite geometry started receiving audience from 

researcher [11-12] this could be linked to itsduality with the 

weak mutually unbiased bases in finite quantum systems with 

variables in 𝑍 𝑏 A method of decomposing a large 

dimensional finite geometry called non-near-linear finite 

geometry intoproducts of many prime dimensional finite 

geometry called the near-linear geometry is showcased in 

thisarticle. The same approach was adopted from the method 

of Good [18] in Fast Fourier transform. Thismethod came into 

existence due to difficult in solving problem which consists of 

a very large integer. In[18] large size integer was factorized as 

products of many small sizes integer. The same was adopted 

in[1] to factorize a large dimensional finite quantum systems 

with variables in 𝑍(𝑏) as products of many smalldimensional 

finite quantum systems. We divide the whole work into the 

following parts; various notationsused throughout the work is 

defined in the preliminaries of this working section II. Section 

III covers finitegeometry 𝐺(𝑏). We discuss factorization of 

lines in finite geometry in section IV. Symplectic on 𝐺(𝑏) 

withnumerical examples was in section V. Finally section VI 

we conclude our work. 

II. PRELIMINARIES 

This section focuses on concepts and terminology used in this 

work to aid an understanding of readers. 

(a) 𝑍(𝑏)represents the ring of integer modulo 𝑏. 

(b)  𝑍∗(𝑏)  represents the invertible integer modulo b.  𝑍(𝑏)  
is 𝜑(𝑏). Where 

𝜑(𝑏) = 𝑏  1 −
1

𝑝𝑗
 𝑘

𝑗=1 ; 𝑝𝑗  = prime   

    (1) 

(c) The Dedekind psi function 𝜓(𝑏) is defined in this work as 

𝜓(𝑏) = 𝑏  1 +
1

𝑝𝑗
 ,𝑝𝑗  = prime    

    (2) 

(d) The set of divisor is denoted in this work by  𝐷(𝑏) . Its 
cardinality is a divisor function 𝜎0(𝑏). 

Here 𝑑│𝑏 means 𝑑divides 𝑏: If 𝑑│𝑏 it means there exists a 

number say 𝑞 an integer such that 
𝑏

𝑑
= 𝑞 

that is 𝑏 =  𝑑𝑞. We showed the existence of a bijection 

between the product of the distinct set 

 𝑏 of prime divisors 𝑑 and 𝑏. The elements of 𝑍(𝑑) are 

embedded in 𝑍(𝑏) for 𝑑│𝑏 thus 

𝑍 𝑑 ∋ 𝜉 → 𝑍 𝑏 ∋
𝑏𝜉

𝑑
.    

     (3) 

(e) GCD(𝛿, 𝛾) represents the greatest common divisor of two 

elements 𝛿 and 𝛾 is represented in this 

work as. 

(f) Integer 𝑏 is expressed as products of its distinct primes 

𝑏 =  𝑝1 × 𝑝2 × …× 𝑝𝑘     
     (4) 

𝑍(𝑏)is a cyclic module. 

III. LINES IN FINITE GEOMETRY 𝐺 𝑏  

A finite geometry 𝐺 𝑏 = 𝑍(𝑏) × 𝑍(𝑏) is defined as the 

combination 

𝐺 𝑏 = (𝑃 𝑏 , 𝐿(𝑏))    

    (5) 

𝑃 𝑏  represent points on a line and 𝐿 𝑏  represent lines in 

𝐺 𝑏  where 

F 
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𝑃(𝑏)= {(𝑘, 𝑔)│𝑘, 𝑔 𝜖𝑍(𝑏)}   

     (6) 

 

Definition III.1. A line 𝐿(𝑥, 𝑦) of 𝐺 𝑏  de_ned as 

𝐿 𝑥;  𝑦 = {(𝛼𝑥, 𝛼𝑦)│𝑥, 𝑦 𝜖𝒁(𝒃)}, 𝜆𝜖𝒁(𝒃)  
    (7) 

The representation 

 𝐺 𝑝𝑗   𝑘
𝑗=1 and  𝑍(𝑝𝑗 ) × 𝑍(𝑝𝑗 )𝑘

𝑗=1  have similar 

interpretation, so at times we interchange them. We discuss 

extensively finite geometry. As a result our point of focus is 

on both near-linear and non-near-linear geometry. Here, two 

lines intersect in at least one point. 𝑍(𝑏)is a ring of integer 

modulo . 𝑏. 

If 𝑑│𝑏,  𝑍(𝑏) × 𝑍(𝑏) and 𝐺 𝑑  is a subgeometry of 𝐺 𝑏 . We 

represent this relation in this work by 

𝐺 𝑘 ≺  𝐺 𝑏 . Propositions of some related works in [10-11] 

were stated below without proof: 

Proposition III.2. 

(i) In 𝐺 𝑏  there exists 𝜓(𝑏) maximal lines with exactly 𝑏 

points. 

(ii) For 𝛼 ∈  𝑍∗(𝑏) 

𝐿(𝛼𝑥, 𝛼𝑦)  =  𝐿(𝑥, 𝑦),    

     (8) 

also, if 

For 𝑍∗(𝑏)′ ∋ 𝛼then 𝐿 𝛼𝑥, 𝛼𝑦 𝑚𝑜𝑑 ≺ 𝐿(𝑥, 𝑦) 

    (9) 

(iii) if GCD 𝑥, 𝑦 ∈ 𝑍 𝑏 , 𝐿 𝑥, 𝑦  is a maximal line in 𝐺 𝑏  
and if GCD 𝑥, 𝑦 ∈ 𝑍 𝑏 −  𝑍∗ 𝑏 ,  

𝐿(𝑥, 𝑦)is a subline in 𝐺(𝑏). 

(iv) Afinite geometry 𝐺(𝑏) in equation (7). The line 

𝐿 𝑥, 𝑦 =  𝐿 𝑡𝑥, 𝑡𝑦 = { 𝑡𝛼𝑥, 𝑡𝛼𝑦 │𝑡 ∈ 𝑍 𝑏 }in𝐺(𝑡𝑏)
    (10) 

A line 𝐿(𝑡𝑥, 𝑡𝑦) in 𝐺(𝑡𝑏) is a subline of 

𝐿 𝑥, 𝑦 =  𝑡 ′𝑥, 𝑡 ′𝑦 │𝑡 , = 0,1, … 𝛼𝑏 − 1}  
    (11) 

(v) For 𝑑│𝑏 two maximal lines have k points in common. The 

k points gives a subline 𝐿(𝑥, 𝑦) where 

𝑥, 𝑦 ∈
𝑏

𝑘
𝑍(𝑞)     

    (12) 

IV. FACTORIZATION OF LINES IN FINITE GEOMETRY 

In this section lines in 𝑍(𝑏) × 𝑍(𝑏) decomposed as products 

of lines in 𝑍(𝑝𝑗 ) × 𝑍(𝑝𝑗 )𝑘
𝑗=1 this 

was achieved by creating a bijection between lines in 𝐺(𝑏) 

and its factor lines in 𝐺(𝑝). We adopted this concept from 

Good [18]. This same concept was used previously [1, 10-11] 

to factorize a big finite b dimensional finite quantum systems 

as products of its components in small dimensional finite 

systems. 

Here we used the same to create two the ordinates of each of 

the points on the lines G(b) in non-near-linear geometries as 

products of many ordinates in the lines G(p) in -near-linear 

geometries. This wascarried out by creating two bijection for 

each of the two 𝑥𝑠 ,and 𝑦𝑠 , ordinates for each lines thus: 

𝑥 ↔  𝑥1, … , 𝑥𝑘 , 𝑥𝑗 = 𝑥 𝑚𝑜𝑑 𝑝𝑗 ; 𝑥 =  𝑥𝑗 𝑠𝑗   

    (13) 

𝑥 ↔  𝑥 1, … , 𝑥 𝑘 , 𝑥 𝑗 = 𝑥𝑡𝑗 = 𝑥𝑗 𝑡𝑗  𝑚𝑜𝑑 𝑝𝑗  ; 𝑥 =

 𝑥 𝑗 𝑟𝑗  (𝑚𝑜𝑑 𝑏)   (14) 

Where 

𝑟𝑗 =
𝑏

𝑝𝑗
, 𝑡𝑗 𝑟𝑗 = 1  𝑚𝑜𝑑 𝑝𝑗  , 𝑠𝑗 =   𝑡𝑗𝑟𝑗 ∈ 𝑍(𝑏) 

    (15) 

𝑥and 𝑦 ordinates in the non-near-linear geometry we 

factorised in line with equations (13) and (14). 

Hence an existence of 𝑜𝑛𝑒 − 𝑡𝑜 − 𝑜𝑛𝑒 correspondence was 

confirmed between 

𝐿(𝑥, 𝑦)in𝐺(𝑏)     

    (16) 

and lines 

𝐿𝑝1
 𝑥1, 𝑦1 × …× 𝐿𝑝𝑘  𝑥𝑘 , 𝑦𝑘 ∈  𝑍(𝑝𝑗 ) × 𝑍(𝑝𝑗 )𝑘

𝑗=1

    (17) 

Where 

(𝑥, 𝑦) ↔  𝑥1 , 𝑦1 × …×   𝑥𝑘 , 𝑦𝑘 and 𝑝𝑗  a prime 

In the previous work of [10 − 11] we confirm the following: 

(i) 𝑏𝜓(𝑏)  maximal lines in total. 

(ii)  𝜓(𝑏) distinct maximal lines. 

Furthermore in this work, 

(iii) We found an existence of 𝜓  
𝑏

𝑝𝑗
  sublines each with 𝑝 

points. 

Analogously, we observe the following 

(i) 𝐿𝑝𝑗 (𝑎, 𝑏 ) are prime factor lines of  𝑍(𝑝𝑗 ) × 𝑍(𝑝𝑗 )𝑘
𝑗=1 , 

where 𝑝𝑗  is a prime number. 

(ii) Lines in 𝑍 𝑏 × 𝑍 𝑏 =  𝑍(𝑝𝑗 ) × 𝑍(𝑝𝑗 )𝑘
𝑗=1 is related to 

expressing a non-prime integer as productsof its prime. 

(iii) The subline𝐺(𝑞) is related to the divisor 𝑞 of an integer. 
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As an illustration, we express all maximal lines in 𝐺(𝑏) = 

𝑍 𝑏 × 𝑍 𝑏  for 𝑏 = 14 in terms of its primesdiscussed in 

equations (13) and (14) above by decomposing line 𝐿14(2,5). 

Using equation (13) the ordinate 2 in 𝐿14(2, 5) is decomposed 

as; 

2 ↔ (0;  2)     

    (18) 

also using equation (14) the ordinate 5 in 𝐿14(2,5) is 

decomposed as; 

5  ↔ (1,6)     

     (19) 

Therefore 𝐿14 (2,5) is decomposed as; 

𝐿2(0,1) × 𝐿7(2,6)    

    (20) 

A. Symplectic Transformation on 𝐺(𝑝) 

The matrix ℳ(𝑝, 𝑞│𝑦, 𝑥) defined as  

ℳ 𝑝, 𝑞 𝑦, 𝑥 =  
𝑝 𝑞
𝑦 𝑥 where𝑝, 𝑞, 𝑦, 𝑥 ∈ 𝑍(𝑏) 

and│ℳ│ = 1 (𝑚𝑜𝑑 𝑝)    

     (21) 

form a Symplectic group. 

ℳ 𝑝, 𝑞 𝑦, 𝑥 (𝛽𝑖 , 𝛾𝑖)
𝑇  = 𝐿 𝑝𝛽𝑖  +  𝑞𝛾𝑖 , 𝑦𝛽𝑖  +  𝑥𝛾𝑖 ;  𝑖 =

 1;  2, … , 𝑝   (22) 

As an illustration, acting a matrix ℳ 0,1 −1, 𝑥 , on a line 

𝐿(1, 𝑥) this produces 𝜓(𝑏) set of lines 

through the origin. 

B. .Symplectic Transformation on𝐺(𝑑) As  𝐺 𝑝𝑗  
𝑘
𝑗=1  

We showcase how prime dimensional finite geometry are 

embedded in non-prime dimensional finitegeometry via 

divisor function. Using the symplectic matrix defined in 

equation (21), we factorized lines 

infinite geometry 𝐺(𝑏) as product of its prime finite geometry 

with respect to equations(13) and (14). 

Thus, 𝑆𝑝(2; 𝑍(𝑏)) is factorized as 𝑆𝑝 2, 𝑍 𝑝1  × …×

𝑆𝑝(2, 𝑍 𝑝𝑘 ); 

whereℳ 𝑝, 𝑞 𝑦, 𝑥  is defined in equation (23) above 

In general, using equations (13) and (14); 𝑆𝑝(2, 𝑍(𝑏)) is 

factorized as 𝑆𝑝 2, 𝑍 𝑝1  × …× 𝑆𝑝(2, 𝑍 𝑝𝑘 ). 

That is 

ℳ 𝑝, 𝑞 𝑦, 𝑥 = ⨂ℳ 𝑝𝑗 , 𝑟𝑗𝑞𝑗  𝑦 𝑗 , 𝑥𝑗    

     (23) 

where𝑝𝑗 , 𝑞𝑗 , 𝑥𝑗  are related 𝑥 in equation (13) and 𝑦 𝑗  is related 

to 𝑦 in equation(14). 

V. ISOMETRIC LINES OF𝑍 𝑏 × 𝑍 𝑏  

Suppose we recall a line through the origin (that is point (0,0)) 

defined earlier in equation (7). For 𝑓 ∈ 𝑍∗(𝑏), then𝐿(𝑥, 𝑦)  ≅
𝐿(𝑓𝑥;  𝑓𝑦).  

We obtain 𝑏𝜓(𝑏) lines in altogether in the finite 

geometry 𝒁 𝒃 × 𝒁 𝒃 out of  𝑏𝜓(𝑏) lines,  only 𝜓(𝑏) are 

distinct. Others are isomorphic to one or another in the 

partition. 

Consider the set of points in the line 

𝐿 𝑥, 𝑦 =   𝑔𝑥1 , 𝑔𝑦1 × …×   𝑔𝑥𝑘 , 𝑔𝑦𝑘   𝑔 ∈ 𝑍∗(𝑏) 

                  (24) 

and 

𝐿 𝑕𝑥, 𝑕𝑦 =   𝑕𝑔𝑥1, 𝑕𝑔𝑦1 × …×   𝑕𝑔𝑥𝑘 , 𝑕𝑔𝑦𝑘   𝑕 ∈ 𝑍∗(𝑏)
    (25) 

We confirmed that there exist a 𝑜𝑛𝑒 −  𝑡𝑜 −  𝑜𝑛𝑒 

correspondence between the points of 𝐿(𝑥, 𝑦) and 

𝐿(𝑕𝑥; 𝑕𝑦).  

Hence 𝐿(𝑥, 𝑦) is isomorphic to 𝐿 𝑕𝜎; 𝑕𝜌 ,If  GCD(𝜎, 𝜌) = 1.  

From equation (8), we confirmed that if 

𝐿 𝑥, 𝑦 =  𝐿 𝑚𝑥,𝑚𝑦 ,𝑚 ∈ 𝑍∗(𝑏) ),   

    (26) 

𝐿 𝑥, 𝑦 ≅  𝐿 𝑚𝑥,𝑚𝑦 ,    

    (27) 

Hence 𝐿 𝑥, 𝑦  and 𝐿 𝑚𝑥,𝑚𝑦  are isometric to each other. 

Proposition V.1. If 𝐿 𝑥, 𝑦  is a line of near-linear finite 

geometry 𝐺(𝑏) where 𝑏 is a prime integer. 

then𝐿 𝜎, 𝜌  is isometric to 𝐿 𝑕𝜎, 𝑕𝜌  ∀ 𝑕 ∈ 𝑍 𝑏 , ∀ 𝑕 ∈ 𝑍(𝑏)
    (28) 

Proof. Suppose 𝑏 is a prime integer and 𝜌, 𝜎 ∈ 𝑍(𝑏) then 

𝑍(𝑏) is a field of integer modulo 𝑏, in this case,every non- 

zero members of this set is invertible, and their additive 

generator is 𝑕. 

Hence complete the proof. 

Furthermore, we confirmed that finding the slope any two 

lines which are isomorphic to each other yieldsan identical 

result. However for 𝑏 a non-prime integer, 

𝐿 𝑚𝑥,𝑚𝑦 ⊂  𝐿 𝑥, 𝑦 ,𝑚 ∈ 𝑍 𝑏 − 𝑍∗(𝑏) ),  
     (29) 

then𝐿 𝑥, 𝑦 ≺  𝐿 𝑚𝑥,𝑚𝑦     

                   (30) 

As a result in this case 𝐿(𝑋, 𝑦) and 𝐿(𝑚𝑥,𝑚𝑦) are 

conditionally isometric to each other in the sense thattaking 

any two arbitrary points in any lines of 𝐺(𝑏) where 𝑏 is non-

prime does not guarantee the sameresult. Examples are shown 

below for lines in near-linear geometry 𝐺(𝑏), for 𝑏 = 7. 
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A. Equigradient Lines 

Suppose a line is expressed as defined in equation (7), then 

𝐿 𝑥, 𝑦 =  𝐿 𝑕𝑥, 𝑕𝑦 , 𝑕 ∈ 𝑍∗(𝑏) ),   

     (31) 

Hence 𝐿 𝑥, 𝑦 ≅  𝐿 𝑕𝑥, 𝑕𝑦 .Finding the slope by taking any 

two arbitrary points of a line yields an identical result with 

anotherline of the same partitions. Here in this work it is 

named an equigradient lines. The reason being thatalthough 

lines may have different naming externally, however by 

examine their internal structure, these lines are equivalent due 

toa 𝑜𝑛𝑒 −  𝑡𝑜 −  𝑜𝑛𝑒 correspondence between points of the 

two lines being examined. Furthermore it wasfound that 

equigradient lines come to existence if and only 𝑏 is a prime. 

Examples 

(1) Lines in geometry 𝐺 7 = 𝑍 7 × 𝑍 7 is obtained as 

follows: 

𝐿(0,1)  ≅ 𝐿(0,2)  ≅ 𝐿(0,3)  ≅ 𝐿(0,4)  ≅ 𝐿(0,5)  ≅ 𝐿(0,6) 
    (32) 

𝐿(1,0)  ≅ 𝐿(2,0)  ≅ 𝐿(3,0)  ≅ 𝐿(4,0)  ≅ 𝐿(5,0)  ≅ 𝐿(6,0) 
    (33) 

𝐿(1,1)  ≅ 𝐿(2,2)  ≅ 𝐿(3,3)  ≅ 𝐿(4,4)  ≅ 𝐿(5,5)  ≅ 𝐿(6,6) 
    (34) 

𝐿(1,2)  ≅ 𝐿(2,4)  ≅ 𝐿(3,6)  ≅ 𝐿(4,1)  ≅ 𝐿(5,3)  ≅ 𝐿(6,5)
     (35) 

𝐿(1,3)  ≅ 𝐿(2,6)  ≅ 𝐿(3,2)  ≅ 𝐿(4,5)  ≅ 𝐿(5,1)  ≅ 𝐿(6,4) 
    (36) 

𝐿(1,4)  ≅ 𝐿(2,1)  ≅ 𝐿(3,5)  ≅ 𝐿(4,2)  ≅ 𝐿(5,6)  ≅ 𝐿(6,3) 
    (37) 

𝐿(1,5)  ≅ 𝐿(2,3)  ≅ 𝐿(3,1)  ≅ 𝐿(4,6)  ≅ 𝐿(5,4)  ≅ 𝐿(6,2) 
    (38) 

𝐿(1,6)  ≅ 𝐿(2,5)  ≅ 𝐿(3,4)  ≅ 𝐿(4,3)  ≅ 𝐿(5,2)  ≅ 𝐿(6,1)
    (39) 

where 

𝐿 2,5 =   0,0 ,  2,5 ,  4,3 ,  6,1 ,  1,6 ,  3,4 ,  5,2  
     (40) 

(2) 𝐿𝑏 ↔ 𝐿𝑝1
 𝑥1 , 𝑦1 × 𝐿𝑝2

 𝑥2 , 𝑦2 𝑏 =  14, 𝑝1 =  2, 𝑝2 =

 7, 𝑟1 =  7, 𝑟2 = 2, 𝑡1 = 1, 𝑡2 = 4. 

 If we substitute the variables in equation (41) into equation 

(17) we obtain the𝜓(14)=24 maximal lines as shown in tables 

(1) and (ii)  below:   

Table (i) 

𝐿14 𝐿2 𝐿7 

𝐿14(0;  1) 𝐿2 0;  1  𝐿7(0;  1) 

𝐿14 1;  0  𝐿2 1;  0  𝐿7(1;  0) 

𝐿14 1;  1  𝐿2 1;  1  𝐿7(1;  4) 

𝐿14 1;  2  𝐿2 1;  0  𝐿7(1;  1) 

𝐿14 1;  3  𝐿2 1;  1  𝐿7(1;  5) 

𝐿14 1;  4  𝐿2 1;  0  𝐿7(1;  2) 

𝐿14 1;  5  𝐿2 1;  1  𝐿7 1;  6  

𝐿14 1;  6  𝐿2 1;  0  𝐿7(1;  3) 

𝐿14(1;  7) 𝐿2(1;  1) 𝐿7(1;  0) 𝐿2 1;  1  𝐿7(1;  0) 

𝐿14 1; 8  𝐿2 1;  0  𝐿7(1;  4) 

𝐿14 1; 9  𝐿2 1;  1  𝐿7(1; 1) 

𝐿14 1; 10  𝐿2 1;  0  𝐿7(1;  5) 

 

Table (ii) 

𝐿14 𝐿2 𝐿7 

𝐿14 1,11  𝐿2 1;  1  𝐿7(1;  2) 

𝐿14 1,12  𝐿2 1;  0  𝐿7(1;  6) 

𝐿14 1,13  𝐿2 1;  1  𝐿7 13  

𝐿14 2,1  𝐿2 0,1  𝐿7(2,4) 

𝐿14(2,3) 𝐿2(0,1) 𝐿7(2;  5) 

𝐿14(2;  5) 𝐿2(0;  1) 𝐿7(2;  6) 

𝐿14(2;  7) 𝐿2(0;  1) 𝐿7(2;  0) 

𝐿14(2;  9) 𝐿2(0;  1) 𝐿7(2;  1) 

𝐿14(2;  11) 𝐿2(0;  1) 𝐿7(2;  2) 

𝐿14(2;  13) 𝐿2(0;  1) 𝐿7(2;  3) 

𝐿14(7;  1) 𝐿2(1;  1) 𝐿7(0;  4) 

𝐿14(7;  2) 𝐿2(1;  0) 𝐿7(0;  1) 

 

VI. CONCLUSION 

Non-near-linear finite geometry was studied. Lines of the 

geometry were factorized as lines in near-linear geometry. 

Symplectic operator was used to generate all points of line 

𝐿(𝑥𝑖 , 𝑦𝑖) and at the end, abijection was created between lines 

in 𝐺(𝑏) and products of line in near-linear geometry 

 𝐺(𝑝𝑗 )𝑘
𝑗=1 . 
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