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Abstract: - In this study, we proposed a mathematical model for 

the vaccination and treatment strategy to eradicate tuberculosis 

with absent of migration effect, where we modified the existing 

model by excluding the migrants effect, incorporate efficacy of 

vaccination, treatment and new babies were considered 100% 

vaccinated. Existence and uniqueness of solution of the modified 

model was carried out and it shows that the solution exists and it 

is unique. The stability analysis of the disease free equilibrium 

shows that the disease-free equilibrium (DFE) is locally 

asymptotically stable.  The effective reproductive number Re was 

computed under different conditions. In the case where there is 

treatment and vaccination we found Re to be 0.22235. The 

results show that mycobacterium tuberculosis can be eradicated 

if mass vaccination and treatment actions are properly initiated 

and enforced. Therefore, migrant that are infected should be 

strongly be discourage from leaving his/her resident country 

before treatment to ensure fast eradication of mycobacterium 

tuberculosis. 

Keywords: tuberculosis, vaccination, treatment, migration  

I. INTRODUCTION 

n deterministic models, individuals in the population are 

assigned to different subgroups or classes, each 

representing a specific stage of the epidemic. Letters such as 

M, S, E, I and R are often used to represent different stages 

[1]. 

The transition rates from one class to another are 

mathematically expressed as derivatives, hence the model is 

formulated using differential equations. While building TB 

models, it must be assumed that the population size in a 

compartment is differentiable with respect to time and the 

epidemic process is deterministic [2]. 

Tuberculosis is an airborne infection caused by 

Mycobacterium Tuberculosis (MTB). [3] opined that MTB or 

TB (short for tubercle bacillus) is a common, and in many 

cases lethal infectious disease caused by various strains of 

mycobacteria, usually mycobacterium tuberculosis. TB 

typically attacks the lungs, but can also affect other parts of 

the body. It is spread through the air when people who have 

active TB infection cough, sneeze, laugh or sing or otherwise 

propel their saliva into the air [4]. Most infections are 

asymptomatic and latent, but about one in ten infections 

eventually progress to active disease which, if left untreated, 

kills more than 50% of those infected [5]. 

Tuberculosis is treated by killing the bacterial using 

antibiotics. The treatment usually last at least six months in 

duration and sometimes longer, up to twenty-four months. It 

involves different antibiotics to increase effectiveness while 

preventing the bacteria from becoming resistant to the 

medicine [6].  

Not everyone infected with TB becomes sick. As a result, two 

TB-related conditions exist: latent TB infection and active TB 

disease. Both latent TB infection and active TB disease can be 

treated [7]. 

Treatment completion is determined by the number of doses 

ingested over a given period of time. Although basic TB 

regimens are broadly applicable, there are modifications that 

should be made under special circumstances (such as people 

with HIV infection, drug resistance, pregnant women or 

treatment of children) [1].Pre-exposure vaccines, also known 

as pre-infection vaccines, are given before infection with the 

pathogen, usually at birth as neonatal vaccines. Pre-exposure 

vaccines speed up the development of immune response, 

therefore preventing further infections from becoming 

symptomatic [8]. [6], presented an SEIR model which 

incorporated treatment of infectious individuals and 

chemoprophylaxis (treatment for the latently infected). The 

model assumed that the latently infected individuals develop 

active disease as a result of endogenous re-activation, 

exogenous re-infection and disease relapse. The study showed 

that chemoprophylaxis will do better in controlling the 

number of infectious due to reduced progression to active TB. 

[9], studied the role of vaccination of newborn babies against 

TB infection and treatment of both latently and actively 

I 



International Journal of Research and Innovation in Applied Science (IJRIAS) | Volume IV, Issue II, February 2019|ISSN 2454-6194 

www.rsisinternational.org Page 106 
 

infected individuals in controlling the spread of TB using 

mathematical model based on the standard SEIR model. The 

disease-free equilibrium state of the model was established 

and its stability analysis using the Routh-Hurwitz theorem. 

The result of the analysis showed that tuberculosis can be 

totally eradicated if effort is made to ensure that the total 

contraction and the total breakdown of the latent class should 

be less than the total removal rate from both the latent and the 

infectious class. From these studies, we can conclude that 

vaccination, treatment and immigration all have effects on the 

spread of TB. While we can see vaccination and treatment 

curbing the spread of the disease, the overall effect is 

neutralized, if not aggravated, by immigration of infective in 

such a way that disease persists in the host population. Further 

studies are required to determine which factor plays the bigger 

role in the spreading/controlling of TB in order to maintain 

the balance and keep the disease under control. 

II. METHOD 

Mathematical models have played a key role in the 

formulation of TB control strategies and the establishment of 

interim goals for intervention programs. Many types of 

epidemic models exist. They include: the stochastic models, 

the deterministic (compartmental) models such as the SIR, 

SIS, SIRS, SEIS, SEIR, MSEIR, models, (Where 

S=Susceptible class; I=Infective class; M=passively immune 

class; E=Exposed class; and R=Recovered class) . 

Our model is a deterministic MSEIR type model where the 

population is partitioned into components or classes based on 

the epidemiological state of the individuals, and it is assumed 

that the epidemic process is deterministic.  

2.1 The Modified Model 

We modified the work of [9] by incorporating incorporate 

efficacy of vaccination, treatment and assuming 100% 

vaccination for the new-births. The modified model based on 

the following assumptions: That the individuals that make up 

the population can be grouped into different compartments 

according to their epidemiological state, the population size in 

a compartment changes with time, all new-births are 

immunized against TB infection and enter the vaccinated 

class, M, and there is migration in the population. That is, 

there are immigrants and emigrants. In addition, it is assumed 

that there is no vertical transmission of TB. That is, no 

transmission from mother to new-born, hence all new-births 

are previously uninfected. The immunity conferred on 

individuals by vaccination wanes after some time at a given 

rate, the population mixes homogeneously. That infection 

does not confer permanent immunity on the individuals and 

susceptible individual once infected develops latent infection. 

Those latently infected individuals are treated and are 

recovered or the infection develops to active TB. Furthermore, 

every individual can die a natural death. That all immigrants 

are either vaccinated and are immune or they are unvaccinated 

and are susceptible. Lastly, the latently infected and infectious 

individuals are restricted from entering the population. 

2.2 Model Variables and Parameters 

The following variables and parameters shall be used in this 

model: 

M(t): the number of individuals who are 

immunized/vaccinated against TB at time t. 

S(t): the number of susceptible individuals. That is, the 

individuals who can catch the disease because they have 

no immunity to the infectious agent so might become 

infected if exposed. 

L(t): the number of latently infected individuals at time t. 

I(t): the number of infectious individuals at time t. 

R(t): the number of individuals who have been treated 

and have recovered from the infection at time t. 

β: the rate of new-births in the population 

f: the efficacy of the vaccine in preventing initial 

infection. 

ϒ: Average immigration rate into the population 

K: the rate at which susceptible individuals develop 

latent infection 

q: the rate of expiration of vaccine (rate at which 

immunity wanes) 

ψ: the rate at which active TB is treated. 

ε: recovery rate of latent infection due to treatment 

α: average emigration rate 

e: efficacy of treatment in curing infected persons 

m: the rate at which latently infected become actively 

infected 

π: the rate at which recovered individuals become 

susceptible to TB again 

μ: natural mortality rate 

𝜇𝜏 :  TB induced deaths 

𝜂: Proportion of immigrants vaccinated and are immune 
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Figure 2: SCHEMATIC PRESENTATION OF THE MODIFIED MODEL 

2.3 The Modified Model Equation 

This section presents the modified model equations by a 

system of differential equations thus: 

𝑑𝑀

𝑑𝑡
= 𝑓𝛽 + 𝑛ϒ− 𝛼𝑀 − 𝜇𝑀 − 𝑞𝑀 

 = 𝑓𝛽 + 𝑛ϒ−  𝛼 + 𝜇 + 𝑞 𝑀                                (1) 

 
𝑑𝑆

𝑑𝑡
=  1 − 𝑓 𝛽 +  1 − 𝑛 ϒ− 𝜇𝑆 − 𝛼𝑆 + 𝑞𝑀 + 𝜋𝑅 − 𝑘𝑆

𝐼

𝑁
 

 

=  1 − 𝑓 𝛽 +  1 − 𝑛 ϒ−  𝜇 + 𝛼 𝑆 + 𝑞𝑀 + 𝜋𝑅

− 𝑘𝑆
𝐼

𝑁
                                            (2) 

𝑑𝐿

𝑑𝑡
= 𝑘𝑆

𝐼

𝑁
− 𝛼𝐿 − 𝜇𝐿 − 𝑚𝐿 − 𝜀𝐿 

= 𝑘𝑆
𝐼

𝑁
−  𝛼 + 𝜇 + 𝑚
+ 𝜀 𝐿                                                                      (3) 

𝑑𝐼

𝑑𝑡
= 𝑚𝐿 − 𝛼𝐼 − 𝜓𝑒𝐼 −  𝜇 + 𝜇𝜏 𝐼 

= 𝑚𝐿 −  𝛼 + 𝜓𝑒 + 𝜇 + 𝜇𝜏 𝐼                             4  
𝑑𝑅

𝑑𝑡
= 𝜓𝑒𝐼 + 𝜀𝐿 − 𝛼𝑅 − 𝜇𝑅 − 𝜋𝑅 

      = 𝜓𝑒𝐼 + 𝜀𝐿 −  𝛼 + 𝜇 + 𝜋 𝑅                                         5  

𝑁 𝑡 = 𝑀 𝑡 + 𝑆 𝑡 + 𝐿 𝑡 +  𝐼 𝑡 + 𝑅 𝑡                    (6) 

𝑀 0 ≥ 0, 𝑆 0 ≥ 0, 𝐿 0 ≥ 0, 𝐼 0 ≥ 0, 𝑅(0) ≥ 0 

The system of equations (1) to (5) are the deterministic model 

equations which will be used to determine the existence and 

uniqueness of solution, the Disease-Free Equilibrium (DFE) 

for the disease as well as calculate the effective reproductive 

number 𝑅𝑒  which determines whether the disease can be 

eliminated or not. 

2.4 Methods of Solution and Analysis 

2.4.1 Existence and Uniqueness of Solution 

To prove the existence and uniqueness of solution of the 

system of equations in section 2.3, we shall use the method 

described by [10]. 

Consider the system of equations below 

 

𝑥1
′ = 𝑓1 𝑡, 𝑥1 , 𝑥2 , … , 𝑥𝑛 , 𝑥1 𝑡0 = 𝑥10

𝑥2
′ = 𝑓2(𝑡, 𝑥1 , 𝑥2 , … , 𝑥𝑛 ), 𝑥2 𝑡0 = 𝑥20

⋮
𝑥𝑛

′ = 𝑓𝑛(𝑡, 𝑥1 , 𝑥2, … , 𝑥𝑛 ), 𝑥𝑛 𝑡0 = 𝑥𝑛0 
 

 
  

               (7) 

We may write (7) in compact form as 

𝑥 ′ = 𝑓 𝑡, 𝑥 , 𝑥 𝑡0 = 𝑥0    

               (8) 

Theorem1: 

Let D denotes the region  𝑡 − 𝑡0 ≤ 𝑎,   𝑥 − 𝑥0  ≤ 𝑏, 𝑥 =

(𝑥1,𝑥2 … , 𝑥𝑛)                            (9) 

Suppose that 𝑓(𝑡, 𝑥) satisfies the Lipschitz condition 

 𝑓 𝑡, 𝑥1 − 𝑓(𝑡, 𝑥2) ≤ 𝑘 𝑥1 − 𝑥2 , where the 

pairs  𝑡, 𝑥1 , (𝑡, 𝑥2) ∈ 𝐷, 𝑘 is a positive constant. Then, there 

is a constant 𝛿 > 0 such that there exist a unique continuous 

vector solution 𝑥(𝑡) of the system (8) in the interval|𝑡 − 𝑡0| ≤

𝛿. 
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It is important to note that Lipschitz condition is satisfied by 

the requirement that 
𝜕𝑓 𝑖

𝜕𝑥 𝑗
 , 𝑖, 𝑗 = 1,2, . . . , 𝑛 are continuous and 

bounded in D. 

2.4.2  Equilibrium and Stability Analysis for the Existing 

Model 

We shall use the formulation of Disease Free Equilibrium 

(DFE) and stability analysis presented in [10] to find the DFE 

for the formulated model and carryout stability analysis. 

Consider the equation (8). 

Definition 3.31: An equilibrium solution or fixed point, or 

steady-state solution of the system (8) is a constant solution x 

of the equation [11]. 

At the equilibrium point, the derivatives in the equations (1) 

to (5) are equal to zero. That is, 𝑀′ = 𝑆 ′ = 𝐿′ = 𝐼′ = 𝑅′ = 0. 

In the absence of any infections (DFE), 𝐿 = 𝐼 = 0. 

To determine the stability of the model, we shall evaluate the 

DFE of the system. 

Theorem 2: Suppose that 𝑥∗ is an equilibrium solution of (8), 

i.e. 𝑓 𝑥∗ = 0, then 

 𝑥∗is locally asymptotically stable (LAS) if all the 

eigenvalues of 𝐽𝑥∗ have negative real parts. 

 If at least one eigen value has positive real part then 

𝑥∗ is unstable. The eigenvalues are the roots of the 

characteristic equation of the Jacobian matrix, J, 

where 𝐽 =  
𝜕𝑓 𝑖

𝜕𝑥 𝑗
 , 𝑖, 𝑗 = 1, 2, . . . , 𝑛. 

III. RESULTS 

In this chapter, the researcher consider the modified model of 

section 2.3 in details by carrying out the existence and 

stability analysis of the disease-free equilibrium (DFE) state 

and determines the basic reproductive number 𝑅0 for the 

formulated model. 

3.1 Existence and Uniqueness of Solution 

We shall prove the existence and uniqueness of solution or 

otherwise of model equations (1) to (5) using the formulation 

of [11]. Specifically, we shall use Theorem 3.31 presented in 

Section 3.3of this work. 

Proof: 

Let  

𝑓1 = 𝑓𝛽 + 𝑛ϒ− (𝛼 + 𝜇 + 𝑞)𝑀 

𝑓2 =  1 − 𝑓 𝛽 +  1 − 𝑛 ϒ−  𝜇 + 𝛼 𝑆 + 𝑞𝑀 + 𝜋𝑅 − 𝑘𝑆
𝐼

𝑁
 

𝑓3 =  𝑘𝑆
𝐼

𝑁
−  𝛼 + 𝜇 + 𝑚 + 𝜀𝑒 𝐿 

𝑓4 = 𝑚𝐿 −  𝛼 + 𝜓𝑒 + 𝜇 + 𝜇𝜏 𝐼 

𝑓5 = 𝜓𝑒𝐼 + 𝜀𝑒𝐿 −  𝛼 + 𝜇 + 𝜋 𝑅. 

It suffices to show that  
𝜕𝑓 𝑖

𝜕𝑥 𝑗
 , 𝑖, 𝑗 = 1,2, . . . , 𝑛 are continuous 

and bounded in the region D defined by equation (9). 

Consider the partial derivatives below: 

 
𝜕𝑓1

𝜕𝑀
 =  − 𝛼 + 𝜇 + 𝑞  < ∞ 

 
𝜕𝑓1

𝜕𝑆
 =  

𝜕𝑓1

𝜕𝐿
 =  

𝜕𝑓1

𝜕𝐼
 =  

𝜕𝑓1

𝜕𝑅
 = 0 < ∞ 

 
𝜕𝑓2

𝜕𝑀
 =  𝑞 < ∞ 

 
𝜕𝑓2

𝜕𝑆
 =  − 𝛼 + 𝜇 − 𝑘

𝐼

𝑁
 < ∞ 

 
𝜕𝑓2

𝜕𝐿
 = 0 < ∞ 

 
𝜕𝑓2

𝜕𝐼
 =  𝜋 < ∞ 

 
𝜕𝑓2

𝜕𝑅
 =  −𝑘𝑆 < ∞ 

 
𝜕𝑓3

𝜕𝑀
 =  

𝜕𝑓3

𝜕𝑅
 = 0 < ∞ 

 
𝜕𝑓3

𝜕𝑆
 =  𝑘

𝐼

𝑁
 < ∞ 

 
𝜕𝑓3

𝜕𝐼
 =  𝑘𝑆 < ∞ 

 
𝜕𝑓3

𝜕𝐿
 =  −(𝛼 + 𝜇 + 𝑚 + 𝜀𝑒) < ∞ 

 
𝜕𝑓4

𝜕𝑀
 =  

𝜕𝑓4

𝜕𝑅
 =  

𝜕𝑓4

𝜕𝑆
 = 0 < ∞ 

 
𝜕𝑓4

𝜕𝐿
 =  𝑚 < ∞ 

 
𝜕𝑓4

𝜕𝐼
 =  −(𝛼 + 𝜓𝑒 + 𝜇 + 𝜇𝑇) < ∞ 

 
𝜕𝑓5

𝜕𝑀
 =  

𝜕𝑓5

𝜕𝑆
 = 0 < ∞ 

 
𝜕𝑓5

𝜕𝐿
 =  𝜀𝑒 < ∞ 

 
𝜕𝑓5

𝜕𝐼
 =  𝜓𝑒 < ∞ 

 
𝜕𝑓5

𝜕𝑅
 =  − 𝛼 + 𝜇 + 𝜋  < ∞ 

Clearly, all these partial derivatives are continuous and 

bounded. Hence by Theorem 3.31 there exists a unique 

solution of the model equation (1)-(5) in the region D. 
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3.2 Existence and Stability of Disease-Free Equilibrium State 

of the Modified Model 

The existence and stability of the DFE state of the modified 

model is investigated in this section 

3.2.1 Equilibrium Solution 

Let 𝐸 𝑀, 𝑆, 𝐿, 𝐼, 𝑅  be the equilibrium point of the system 

described by the equations (1) to (5). At the equilibrium state 

we have: 

𝑑𝑀

𝑑𝑡
=

𝑑𝑆

𝑑𝑡
=

𝑑𝐿

𝑑𝑡
=

𝑑𝐼

𝑑𝑡
=

𝑑𝑅

𝑑𝑡
= 0 

That is, 

𝑓𝛽 + 𝑛ϒ − (𝛼 + 𝜇 + 𝑞)𝑀 = 0   

     (10) 

 1 − 𝑓 𝛽 +  1 − 𝑛 ϒ −  𝜇 + 𝛼 𝑆 + 𝑞𝑀 + 𝜋𝑅 − 𝑘𝑆
𝐼

𝑁
= 0

     (11) 

𝑘𝑆
𝐼

𝑁
−  𝛼 + 𝜇 + 𝑚 + 𝜀 𝐿 = 0   

     (12) 

𝑚𝐿 −  𝛼 + 𝜓𝑒 + 𝜇 + 𝜇𝜏 𝐼 = 0   

     (13) 

𝜓𝑒𝐼 + 𝜀𝐿 −  𝛼 + 𝜇 + 𝜋 𝑅 = 0   

     (14) 

In order to obtain the disease-free equilibrium state, we solve 

the system of equations (10) to (14) simultaneously. 

3.2.2 Existence of Trivial Equilibrium State 

Let 𝐸0(𝑀0, 𝑆0 , 𝐿0 , 𝐼0 , 𝑅0) be the trivial equilibrium state for 

the model. That is, when 𝑀 = 𝑆 = 𝐿 = 𝐼 = 𝑅 = 0. so 

that𝐸0 𝑀0 , 𝑆0, 𝐿0 , 𝐼0 , 𝑅0 = (0,0,0,0,0). But no such 

equilibrium exists for the model since the population cannot 

go extinct so long as new babies are born into the population 

and there is migration into the population. In other words, so 

long as the recruitment terms 𝑓𝛽 and (1 − 𝑓)𝛽 are not both 

zero and also 𝜂ϒ and (1 − 𝜂)ϒ cannot be both zero, the 

population will never go extinct; and so 

𝐸0 𝑀0 , 𝑆0, 𝐿0 , 𝐼0 , 𝑅0 ≠ (0,0,0,0,0). 

3.2.3 The Diseease-Free Equilibrium State 

The disease-free equilibrium state is the state of total 

eradication of the disease. Let 𝐸0(𝑀0, 𝑆0, 𝐿0 , 𝐼0, 𝑅0) be the 

DFE state for the model. For disease-free equilibrium state, 

the disease states of the model must be zero. That is, the 

infectious class, I and the latently infected class, L must be 

zero. Mathematically, for the DFE state 𝐿0 = 𝐼0 = 0. 

Now, substituting  𝐿0 = 𝐼0 = 0 into the system of equations 

(10) to (14) we obtain the following: 

From (10), 

𝑓𝛽 + 𝑛ϒ − (𝛼 + 𝜇 + 𝑞)𝑀 = 0 

  𝛼 + 𝜇 + 𝑞 𝑀 =  𝑓𝛽 + 𝑛ϒ 

 𝑀 =
𝑓𝛽 +𝑛ϒ

𝛼+𝜇+𝑞
 , 

That is, 

𝑀0 =    
𝑓𝛽 +𝑛ϒ

𝛼+𝜇+𝑞
    

     (15) 

From ((11), 

 1 − 𝑓 𝛽 +  1 − 𝑛 ϒ −  𝜇 + 𝛼 𝑆 + 𝑞𝑀 + 𝜋𝑅 − 𝑘𝑆
𝐼

𝑁
= 0 

For𝐼 = 0, we have: 

 1 − 𝑓 𝛽 +  1 − 𝑛 ϒ −  𝜇 + 𝛼 𝑆 + 𝑞𝑀 + 𝜋𝑅 = 0  

     (*) 

But 𝑀0 =
𝑓𝛽 +𝑛ϒ

𝛼+𝜇+𝑞
, substituting into (*) yields: 

 1 − 𝑓 𝛽 +  1 − 𝑛 ϒ −  𝜇 + 𝛼 𝑆 +
𝑞(𝑓𝛽 +𝑛ϒ)

𝛼+𝜇 +𝑞
+ 𝜋𝑅 = 0 

     (16) 

From (4.13), 

𝑘𝑆𝐼 −  𝛼 + 𝜇 + 𝑚 + 𝜀𝑒 𝐿 = 0 

For 𝐼 = 𝐿 = 0,the equation vanishes. 

Similarly, equation (4.14) vanishes on substituting𝐼 = 𝐿 = 0, 

since it depends entirely on 𝐼 and 𝐿 only. 

From equation (4.15), 

𝜓𝑒𝐼 + 𝜀𝑒𝐿 −  𝛼 + 𝜇 + 𝜋 𝑅 = 0 

 0 + 0 −  𝛼 + 𝜇 + 𝜋 𝑅 = 0  (since I=L=0) 

  𝛼 + 𝜇 + 𝜋 𝑅 = 0   
      (**) 

Either 𝛼 + 𝜇 + 𝜋 = 0 Or𝑅 = 0 

But 𝛼 + 𝜇 + 𝜋 cannot be zero since 𝛼, 𝜇, 𝜋 are 

positive constants. i.e. (𝛼 + 𝜇 + 𝜋) ≠ 0 

 For (**) to be true, then necessarily, 𝑅 = 0. 

Therefore, 𝑅0 =   0   

     (17) 

If 𝑅 = 0, equation (4.17) becomes 

 1 − 𝑓 𝛽 +  1 − 𝑛 ϒ −  𝜇 + 𝛼 𝑆 + 

𝑞 𝑓𝛽 + 𝑛ϒ 

𝛼 + 𝜇 + 𝑞
+ 𝜋 0 = 0 

 𝑆 =
  1−𝑓 𝛽+ 1−𝑛 ϒ  𝛼+𝜇+𝑞 +𝑞(𝑓𝛽 +𝑛ϒ)

 𝛼+𝜇 (𝛼+𝜇 +𝑞)
 

 

 𝑆0 =
𝑞 𝛽+ϒ + 𝛼+𝜇 { 1−𝑓 𝛽+ 1−𝜂 ϒ}

 𝛼+𝜇 (𝛼+𝜇 +𝑞)
      

      (18a) 

Therefore, the DFE state for the model is 

𝐸0 𝑀0 , 𝑆0, 𝐿0 , 𝐼0 , 𝑅0 = 

(
𝑓𝛽 + 𝑛ϒ

𝛼 + 𝜇 + 𝑞
,  
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𝑞 𝛽 + ϒ +  𝛼 + 𝜇 { 1 − 𝑓 𝛽 +  1 − 𝜂 ϒ}

 𝛼 + 𝜇 (𝛼 + 𝜇 + 𝑞)
, 0, 0, 0) 

3.2.4 Stability Analysis of the Disease- Free Equilibrium State 

To determine the stability or otherwise of the disease-free 

equilibrium state𝐸0, we examine the behavior of the model 

equations near this equilibrium solution. Here we examine the 

condition(s) that must be met for the disease-free equilibrium 

state to be stable. In other words, we determine the conditions 

that must be met if the disease is to be totally eradicated from 

the population. 

Recall the system of equations of this model at equilibrium as 

given in equations (10)-(14) 

We now linearize the system of equations, to get the Jacobian 

matrix, J as; 

 

 

𝐽 =

 
 
 
 
 
 
 
 
 
 
 
 
− 𝛼 + 𝜇 + 𝑞 0 0 0 0

𝑞 − 𝛼 + 𝜇 − 𝑘
𝐼

𝑁
0 −𝑘𝑆 𝜋

0 𝑘𝐼 −(𝛼 + 𝜇 + 𝑚 + 𝜀) 𝑘𝑆 0

0 0 𝑚 −(𝛼 + 𝜓𝑒 + 𝜇 + 𝜇𝜏) 0

0 0 𝜀 𝜓𝑒 − 𝛼 + 𝜇 + 𝜋 𝑅 
 
 
 
 
 
 
 
 
 
 
 

   

 (18b) 

At the disease-free equilibrium 

𝐸0 𝑀0, 𝑆0, 𝐿0 , 𝐼0, 𝑅0 = (
𝑓𝛽 +𝑛ϒ

𝛼+𝜇 +𝑞
,
𝑞 𝛽+ϒ + 𝛼+𝜇 { 1−𝑓 𝛽+ 1−𝜂 ϒ}

 𝛼+𝜇 (𝛼+𝜇+𝑞)
, 0, 0, 0), 

The Jacobian Matrix (18b) becomes 

𝐽𝐸0 =

 
 
 
 
 
 
 
 
 
 
 
−(𝛼 + 𝜇 + 𝑞) 0 0 0 0

𝑞 −(𝛼 + 𝜇) 0
−𝑘{𝑞 𝛽 + ϒ +  𝛼 + 𝜇   1 − 𝑓 𝛽 +  1 − 𝜂 ϒ }

 𝛼 + 𝜇 (𝛼 + 𝜇 + 𝑞)
𝜋

0 0 −(𝛼 + 𝜇 + 𝑚 + 𝜀)
𝑘{𝑞 𝛽 + ϒ +  𝛼 + 𝜇   1 − 𝑓 𝛽 +  1 − 𝜂 ϒ }

 𝛼 + 𝜇 (𝛼 + 𝜇 + 𝑞)
0

0 0 𝑚 −(𝛼 + 𝜓𝑒 + 𝜇 + 𝜇𝑇) 0

0 0 𝜀 𝜓𝑒 0 
 
 
 
 
 
 
 
 
 
 

 

 

Where the quantity 
𝑞 𝛽+ϒ + 𝛼+𝜇   1−𝑓 𝛽+ 1−𝜂 ϒ 

 𝛼+𝜇 (𝛼+𝜇 +𝑞)
= 𝑠𝑜  

The Eigen values are calculated from the characteristics equation  𝐽𝐸𝑜 − 𝜆𝐼 = 0 where 𝐼 is a5 × 5 identity matrix. That is, 

 

 𝐽𝐸𝑜 − 𝜆𝐼 =

 

 

 

− 𝛼 + 𝜇 + 𝑞 − 𝜆 0 0 0 0

𝑞 − 𝛼 + 𝜇 − 𝜆 0 −𝑘𝑠𝑜 𝜋

0 0 − 𝛼 + 𝜇 + 𝑚 + 𝜀 − 𝜆 𝑘𝑠𝑜 0

0 0 𝑚 − 𝛼 + 𝜓𝑒 + 𝜇 + 𝜇𝜏 − 𝜆 0

0 0 𝜀 𝜓𝑒 − 𝛼 + 𝜇 + 𝜋 − 𝜆

 

 

 

= 0 
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For simplicity of appearance and computational advantage, we let 𝑐 = 𝛼 + 𝜇. Then we obtain the following 

 

 𝐽𝐸𝑜 − 𝜆𝐼 =  − 𝑐 + 𝑞 − 𝜆 

 

 

−𝑐 − 𝜆 0 −𝑘𝑠𝑜 𝜋

0 − 𝑐 + 𝑚 + 𝜀 − 𝜆 𝑘𝑠𝑜 0

0 𝑚 − 𝑐 + 𝜓𝑒 + 𝜇𝜏 − 𝜆 0

0 𝜀 𝜓𝑒 − 𝑐 + 𝜋 − 𝜆

 

 

= 0 

 

=  − 𝑐 + 𝑞 − 𝜆  −𝑐 − 𝜆 
 
 

− 𝑐 + 𝑚 + 𝜀 − 𝜆 𝑘𝑠𝑜 0

𝑚 − 𝑐 + 𝜓𝑒 + 𝜇𝜏 − 𝜆 0

𝜀 𝜓𝑒 − 𝑐 + 𝜋 − 𝜆

 
 = 0 

 

=  − 𝑐 + 𝑞 − 𝜆  −𝑐 − 𝜆  − 𝑐 +  𝜋 − 𝜆  

− 𝑐 + 𝑚 + 𝜀 − 𝜆 𝑘𝑠𝑜

𝑚 − 𝑐 + 𝜓𝑒 + 𝜇𝜏 − 𝜆

 =0                                  

 (19) 

From equation (19), 

Either –  𝑐 + 𝑞 − 𝜆  −𝑐 − 𝜆  − 𝑐 +  𝜋 − 𝜆 = 0    (20) 

Or 

 

− 𝑐 + 𝑚 + 𝜀 − 𝜆 𝑘𝑠𝑜

𝑚 − 𝑐 + 𝜓𝑒 + 𝜇𝜏 − 𝜆

 = 0          (21) 

From equation (21) 

 
𝜆1 = − 𝑐 + 𝑞 

𝜆2 = −𝑐
𝜆3 = −(𝑐 + 𝜋)

                                                                       (22) 

From equation (22), we see that the first three (3) Eigen 

values 𝜆1, 𝜆2  𝑎𝑛𝑑 𝜆3 are all negative. 

Using theorem 3.32, we see that the DFE of this model will 

be asymptotically stable iff the remaining Eigen values, 

𝜆4 𝑎𝑛𝑑 𝜆5 are also negative. 

Now, we consider equation (21). For local asymptotic stability 

(LAS) of the DFE, we require the remaining two eigenvalues  

𝜆4 𝑎𝑛𝑑 𝜆5 to be negative. 

Theorem 4.1 

Let A be an𝑛 × 𝑛 matrix. Then: 

i. The matrix A has 𝑛 eigenvalues (including each 

according to its multiplicity). 

ii. The sum of the 𝑛 eigenvalues of A is the same as the 

trace of A. 

iii. The product of the 𝑛 eigenvalues of A is equal to the 

determinant of A. 

Using heorem 4.1, we shall prove that  𝜆4  𝑎𝑛𝑑 𝜆5 are both 

negative or otherwise. 

Let A=  

− 𝑐 + 𝑚 + 𝜀 𝑘𝑠𝑜

𝑚 − 𝑐 + 𝜓𝑒 + 𝜇𝜏 

  

 

𝑇𝑟𝑎𝑐𝑒 𝐴 = − 𝑐 + 𝑚 + 𝜀 −  𝑐 + 𝜓𝑒 + 𝜇𝜏                       (23) 

𝐷𝑒𝑡 𝐴 =  𝑐 + 𝑚 + 𝜀  𝑐 + 𝜓𝑒 + 𝜇𝜏 − 𝑘𝑚𝑠𝑜        (24) 

If 𝜆4  𝑎𝑛𝑑 𝜆5 are both negative, then we have 

𝜆4 + 𝜆5 < 0, it implies that 𝑇𝑟𝑎𝑐𝑒 𝐴 < 0 

i.e.− 𝑐 + 𝑚 + 𝜀 −  𝑐 + 𝜓𝑒 + 𝜇𝜏 < 0 

It is clear that𝑇𝑟𝑎𝑐𝑒 𝐴 < 0 since all the parameters are 

positive constant. 

Also, 𝜆4. 𝜆5 > 0, it implies that 𝐷𝑒𝑡 𝐴 > 0 

i.e. 𝑐 + 𝑚 + 𝜀  𝑐 + 𝜓𝑒 + 𝜇𝜏 − 𝑘𝑚𝑠𝑜 > 0 

 𝑘𝑚𝑠𝑜 <  𝑐 + 𝑚 + 𝜀  𝑐 + 𝜓𝑒 + 𝜇𝜏  
     (**) 

Dividing both sides of inequality (**) by  𝑐 + 𝑚 + 𝜀  𝑐 +
𝜓𝑒+𝜇𝜏 yields: 

𝑘𝑚𝑠𝑜

 𝑐+𝑚+𝜀  𝑐+𝜓𝑒 +𝜇𝜏 
< 1 , where 𝑐 = 𝛼 + 𝜇 

     (25) 

The inequality (25) determines the threshold under which the 

disease can be eliminated or brought under control. It is the 

necessary and sufficient condition for the disease free 

equilibrium of the model to be stable. 
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3.3 The Effective Reproduction Number, 𝑅𝑒  

We determine the basic reproduction number, 𝑅𝑒  for the 

model equations (10) to (14). This will be calculated using the 

next generation matrix method as described by [15]. 

Consider the next generation matrix G, which is made up of 

two parts: F and V
-1

, where  

𝐹 =  
𝜕𝐹𝑖(𝐸

𝑜)

𝜕𝑥𝑗

  

And 

𝑉 =  
𝜕𝑉𝑖(𝐸

𝑜)

𝜕𝑥𝑗

  

The Fi’s are the new infections while the Vi’s shows the 

transfer of  infections from one compartment to another. Here 

E
o
 is the disease-free equilibrium state. The basic 

reproduction number is the dominant Eigen value of the 

matrix G. 

In this model, there are two disease states i.e. the latent class, 

L and the infectious class, I. 

Recall that 

𝑑𝐿

𝑑𝑡
= 𝑘𝑆

𝐼

𝑁
−  𝛼 + 𝜇 + 𝑚 + 𝜀 𝐿 

𝑑𝐼

𝑑𝑡
= 𝑚𝐿 −  𝛼 + 𝜓𝑒 + 𝜇 + 𝜇𝜏 𝐼 

The vector Fx, of the rates of new infections in compartments 

L and I is given by  

𝐹𝑥 =  
𝑘𝑆

𝐼

𝑁

0

  

Also the remaining transfer terms in compartments L and I is 

given by 

𝑉𝑥 =  
( 𝛼 + 𝜇 + 𝑚 + 𝜀 𝐿

 𝛼 + 𝜓𝑒 + 𝜇 + 𝜇𝜏 𝐼 − 𝑚𝐿
  

Now we compute the matrix of partial derivatives of Fx at the 

disease-free equilibrium state 𝐸𝑜 = (𝑉𝑜 , 𝑆𝑜 , 0,0,0, ). Thus, 

𝐹𝑥 𝐸
𝑜 =  

0 𝑘𝑆𝑜

0 0
 Where𝑠𝑜 =

𝑞 𝛽+ϒ + 𝛼+𝜇 { 1−𝑓 𝛽+ 1−𝜂 ϒ}

 𝛼+𝜇 (𝛼+𝜇 +𝑞)
 

And the matrix of the partial derivatives of Vx at the disease-

free equilibrium state 𝐸𝑜 = (𝑉𝑜 , 𝑆𝑜 , 0,0,0, ) is: 

𝑉𝑥 𝐸
𝑜 =  

𝛼 + 𝜇 + 𝑚 + 𝜀 0

−𝑚 𝛼 + 𝜓𝑒 + 𝜇 + 𝜇𝜏

  

R0 is the dominant Eigen value of the next generation matrix 

G. 

𝐺 = 𝐹𝑥(𝐸𝑜)𝑉𝑥
−1. 

Using the software, Mapple, we have: 

𝑉𝑥
−1

=

 

 
 

1

𝛼 + 𝜇 + 𝑚 + 𝜀
0

𝑚

 𝛼 + 𝜇 + 𝑚 + 𝜀 (𝛼 + 𝜓𝑒 + 𝜇 + 𝜇𝜏)

1

𝛼 + 𝜓𝑒 + 𝜇 + 𝜇𝜏 

 
 

 

So that 

𝐺

=  
0 𝑘𝑆𝑜

0 0
 

×

 

 
 

1

𝛼 + 𝜇 + 𝑚 + 𝜀
0

𝑚

 𝛼 + 𝜇 + 𝑚 + 𝜀 (𝛼 + 𝜓𝑒 + 𝜇 + 𝜇𝜏)

1

𝛼 + 𝜓𝑒 + 𝜇 + 𝜇𝜏 

 
 

 

 

𝐺

=

 

 
 

𝑘𝑚𝑆𝑜

 𝛼 + 𝜇 + 𝑚 + 𝜀 (𝛼 + 𝜓𝑒 + 𝜇 + 𝜇𝜏)

𝑘𝑆𝑜

𝛼 + 𝜓𝑒 + 𝜇 + 𝜇𝜏

0 0  

 
 

 

By definition, Ro is the dominant or the leading Eigen value of 

G. So, 

𝑅𝑒 =
𝑘𝑚𝑆𝑜

 𝛼 + 𝜇 + 𝑚 + 𝜀  𝛼 + 𝜓𝑒 + 𝜇 + 𝜇𝜏 
 

But 𝑆𝑜 =
𝑞 𝛽+ϒ + 𝛼+𝜇 { 1−𝑓 𝛽+ 1−𝜂 ϒ}

 𝛼+𝜇 (𝛼+𝜇 +𝑞)
 

Therefore, 

𝑅𝑒

=
𝑘𝑚𝑞 𝛽 + ϒ + 𝑘𝑚 𝛼 + 𝜇 { 1 − 𝑓 𝛽 +  1 − 𝜂 ϒ}

 𝛼 + 𝜇 + 𝑚 + 𝜀  𝛼 + 𝜓𝑒 + 𝜇 + 𝜇𝜏  𝛼 + 𝜇 (𝛼 + 𝜇 + 𝑞)
 

We now use the parameter values presented in Table 1 to find 

the numerical value of Re which determines whether the 

disease can be eliminated or not. 

Let 𝑅𝑒 =
𝑁𝑢𝑚

𝐷𝑒𝑛
 

Where 𝑁𝑢𝑚 = 𝑘𝑚𝑞 𝛽 + ϒ + 𝑘𝑚 𝛼 + 𝜇 { 1 − 𝑓 𝛽 +
 1 − 𝜂 ϒ} 

And 𝐷𝑒𝑛 =  𝛼 + 𝜇 + 𝑚 + 𝜀  𝛼 + 𝜓𝑒 + 𝜇 + 𝜇𝜏  𝛼 + 𝜇 (𝛼 +
𝜇 + 𝑞) 

So that, 

𝑁𝑢𝑚 =  0.238 ∗ 0.13 ∗ 0.37 ∗  0.0369 + 0.0049  
+ {0.238 ∗ 0.13 ∗  0.0051 + 0.0124 

∗   0.05 ∗ 0.0369 +  0.86 ∗ 0.0049  } 
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 = 4.817986856 × 10−4 

𝐷𝑒𝑛 =  0.0049 + 0.0124 + 0.13 +  0.7 ∗ 0.8  
∗  0.0049 + 00124 +  0.55 ∗ 0.8 
+ 0.024 ∗  0.0049 + 0.0124 
∗  0.0049 + 0.0124 + 0.37  

= 2.280536106 × 10−3 

∴  𝑅𝑒=

4.817986856 × 10−4

2.280536106 × 10−3
 

 = 0.2112. 

The table below gives the values of Re under different 

conditions. 

Table 1: Computed Effective Reproductive Number, (Re) and Basic Reproductive Number, (R0)  of the modified model. 

Population 
Re: Treatment and 

vaccination 

Re: Treatment but No 

Vaccination 

Re: Vaccination but No 

Treatment 

R0: Without 

Vaccination and 

without Treatment 

Without Migrant 0.22235 0.22942 17.2160 17.763 

 

3.4 Graphical Simulation 

In this section, the numerical simulations for the model systems under different conditions are presented. This we shall achieve by 

using the parameter values given in Table 1 and 2. 

Table 2: Model parameters and their interpretations 

S/N PARAMETER SYMBOL VALUE(per year) SOURCE 

01 The rate of new births 𝛽 0.0369 [13] 

02 The rate of Latent infection 𝑘 0.2380 [12] 

03 The rate of Expiration of vaccine 𝑞 0.3700 [12] 

04 Treatment rate for active TB 𝜓 0.5500 [14] 

05 Treatment rate of latent TB 𝜀 0.7000 [13] 

06 The rate at which latent becomes infectious 𝑚 0.1300 [14] 

07 The natural mortality rate 𝜇 0.0124 [13] 

08 TB induced death 𝜇𝜏  0.0240 [14] 

09 Efficacy of vaccine 𝑓 0.9500 [12] 

10 Efficacy of treatment 𝑒 0.8000 Assumed 

11 The rate at which recovered become 

Susceptible 

𝜋 0.0001 [14] 

Initial conditions are given as follows: S(0)=11 000, L(0)=3 500, I(0)=500, R(0)=0 (Nadhirah,2013). 

 

Figure 1: Graph showing the prevalence of each class in the presence of vaccination and treatment. 
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Figure 2: Graph showing the prevalence of each class in the presence of treatment and absence of vaccination. 

 

Figure 3: Graph showing the prevalence of each class in the presence of vaccination and absence of treatment. 

0 5 10 15 20 25 30 35 40 45 50
-1

0

1

2

3

4

5

6

7

8

Time (years)

P
re

v
a
le

n
c
e
 

 

 

Immunized individuals

Susceptible Individuals

latently infected individuals

Infectious individuals

Recovered Individuals

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Time (years)

P
re

v
a
le

n
c
e
 

 

 

Immunized individuals

Susceptible Individuals

latently infected individuals

Infectious individuals

Recovered Individuals



International Journal of Research and Innovation in Applied Science (IJRIAS) | Volume IV, Issue II, February 2019|ISSN 2454-6194 

www.rsisinternational.org Page 115 
 

 

Figure 4: Graph showing the prevalence of each class in the absence of vaccination and treatment. 

 

IV. DISCUSSION AND CONCLUSION 

We put forward a mathematical model for predicting the 

eradication of tuberculosis in the course of vaccination 

treatment strategy with not present of migration effect. It was 

assumed that the participants into population are new-births. 

We examine the existence and uniqueness of the solution of 

the model and it was establish that the solution exist and 

unique. Stability analysis was carried out and it was found 

that the modified model is stable since term  (rate of new 

births) cannot be zero. Also, the disease free equilibrium is 

locally asymptotically stable since DFE<1. Furthermore, 

effective reproduction number (Re ) was found to be 0.22235 

when there is treatment and vaccination, 0.22942 when there 

is treatment and no vaccination and 17.2160 when there is 

vaccination and no treatment  while basic reproduction 

number (R0) was found to be 17.763 as shown in Table 1.In 

figure 1,2, and 4 as infected individual are leaving the infected 

compartment, the susceptible individual are increasing which 

implies that, TB eradicate faster in the absence of migration.  

Therefore, migrant that are infected should be strongly be 

discouraged from leaving his/her resident country before 

treatment.  
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