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Abstract. For any graph G and any positive integer k assign 

vertex labels from {0, 1, 2,…, k-1} so that when the edge labels 

are induced by the absolute value of difference of the vertex 

labels, the number of vertices labeled with i and the number of 

vertices labeled with j differ by atmost one and the number of 

edges labeled with i and the number of edges labeled with j differ 

by at most one. Cahit called a graph with such an assignment of 

labels k-equitable. In this paper, we show that the corona graphs 

CnoK1 are 9-equitable as per cahit’s definition of k-equitability. 
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I. INTRODUCTION 

 labelling of the vertices of a graph G is an assignment of 

distinct natural numbers to the vertices of G. every 

labeling induces a natural labeling of the edges: The label of 

an edge υν is the absolute value of the difference of the labels 

of υ and ν. Bloom [3] defined a labelling of the vertices of a 

graph to be k-equitable if in the induced labelling of its edges, 

every label occurs exactly k-times, if at all. Furthermore a k-

equitable labeling of a graph of order p is said to be minimal if 

the vertices are labeled with 1,2,…,p. 

   Bloom [3] posed the following question: Is the condition 

that k is a proper devisor of p sufficient for the cycle Cp to 

have a minimal k-equitable labeling. Wojeiechowski [7] gave 

a positive answer to this question. Barrientos, Dejter and 

Hevia [4] have shown that forests of even size are 2-equitable. 

They also prove that for k =3 or k =4 a forest F of size kw is 

k-equitable if and only if the maximum degree of F is at most 

2w and that if 3 divides the size of the double star Sm,n(1≤ m ≤ 

n), then Sm,n is 3-equitable if and only if  
𝑞

3
≤ m ≤ ↱

𝑞−1

2
↰. Here 

Sm, n is K2 with n pendent edges attached at one end and n 

pendent edges attached at the other end. They discussed the k-

equitability of forests for k ≥ 5 and characterized all 

caterpillars of diameter 2 that are k-equitable for all possible 

values of k. 

The corona G1oG2 of two graphs G1 and G2 was defined 

Frucht and Harary [5] as the graph G obtained by taking one 

copy of G1 which has p1 vertices and p1 copies of G2 and then 

joining the i
th

 vertex of G1 to every vertex in the i
th

 copy of G2. 

In [6] Vasanti Bhat-Nayak and Shanta Telang prove that the 

corona graphs CnoK1 are k-equitables as per cahit’s definition 

of k-equitability k=2,3,4,5,6. In [1] D G Akka and Sanjay Roy 

proved that the corona graphs CnoK1 are 7-equitable. In [2] D 

G Akka and et al proved that the corona graphs CnoK1 are 8-

equitable. Here we prove that the corona CnoK1 is cahit-9-

equitable. 

II. CAHIT-9-EQUITABILITY OF CORONAS 

In this paper we will use the following notations 

V(CnoK1) = {u1,u2, …, un,υ1,υ2, …, υn} where u1,u2, …, un, u1 

is the cycle Cn and υi is the pendent vertex adjacent to ui,  1 ≤ i 

≤ n. 

Theorem. All coronas are Cahit-9-equitable. 

Proof. For Cahit-9-equitability the label set as well as the edge 

weight set is {0,1,2,…,8}. We have p=q=2n where p= 

│V(CnoK1)│, q = │E(CnoK1)│. We consider nine different 

cases. 

CASE 1.  2n ≡  0 (mod 9) 

Let p = q = 2n =9t,  t ≥ 2. Note that 9t = 2n implies t is even. 

We describe labeling at the end of the proof for t = 2, so let t ≥ 

4. For Cahit-9-equitability of (CnoK1) each label will have to 

be used t-times such that each edge weight occur t times. 

   We define the labelling function f:V(CnoK1)→ {0,1,2,…,8} 

as follows. 

f(u1) = 0       f(υ1) = 2 

f(u2i) = 8 f(υ2i) = 8  1 ≤ i ≤ 𝑡 2  

f(u2i+1) = 0 f(υ2i+1) = 3 1 ≤ i ≤ 𝑡 2  

f(u2i) = 7,             f(υ2i) = 1,  
𝑡

2
+ 1 ≤ i ≤ t 

f(u2i+1) = 0,         f(υ2i+1) = 6 ,        
𝑡

2
+ 1 ≤ i ≤ t-1 

f(u2i+1) = 1,         f(υ2i+1) = 5,          t ≤ i ≤   
3𝑡

2
− 2 

f(u2i) = 6,            f(υ2i) = 2,             t + 1 ≤ i ≤  
3𝑡

2
 

f(u3t-1) =1 f(υ3t-1) = 6 

f(u2i+1) =4,        f(υ2i+1) = 5,           
3𝑡

2
 ≤ i ≤, 2t−2 

f(u2i) =2,          f(υ2i) =3 ,              
3𝑡

2
+ 1 ≤ i ≤ , 2t−1 

f(ui) = 4,         f(υi) = 5,                 4t -1 ≤ i ≤ 4t 

f(ui) = 4,          f(υi) = 7,                 4t +1 ≤ i ≤ 
9𝑡

2
− 1 

A 
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f(𝑢9𝑡

2

 ) = 7,     f(𝑣9𝑡

2

) = 3 

It is not hard to verify that each label and each edge-weight 

occurs exactly t times. We obtain a suitable labelling for t = 2 

which corresponds to n = 9 as follows. 

CAHIT-9-EQUITABLE LABELING OF C9oK1 

Here p = q = 18, t = 2, n = 9 

v1 

2 

0 

u1 

v2 

8 

8 

u2 

v3 

3 

0 

u3 

v4 

1 

7 

u4 

v5 

6 

1 

u5 

v6 

2 

6 

u6 

v7 

5 

4 

u7 

v8 

5 

4 

u8 

v9 

3 

7 

u9 

 

CASE 2. 2n  ≡  1  (mod 9) 

Suppose p = q = 2n = 9t + 1, t ≥ 1. It is easy to see that as 2n = 

9t +1, t is an odd integer. We select suitable labeling at the 

end of the proof for t = 1 and 3. So let t ≥ 5 for cahit-9-

equitability of CnoK1, 8 labels will have to be utilised t times 

each and one label will have to be utilised ′t + 1′ times such 

that eight edge weight will occur ′t′ times each and one edge 

weight will occur ′t + 1′ times. 

We given below the labeling function f: 

V(CnoK1)→{0,1,…,8} 

f(𝑢1) = 8, f(𝑣1) = 3 

f(u2) = 0, f(υ2) = 2 

f(u2i+1) = 8, f(υ2i+1) = 8, 1 ≤ i ≤ 
𝑡−1

2
 

f(u2i+2) =0, f(υ2i+2) = 3, 1 ≤ i ≤ 
𝑡+1

2
 

f(u2i+1) =7, f(υ2i+1) = 1, 
𝑡+1

2
 ≤ i ≤ t 

f(u2i) =0, f(υ2i) = 6, 
𝑡+5

2
 ≤ i ≤ t 

f(u2i) =1, f(υ2i) = 5, (t+1)≤ i ≤ 3(
𝑡−1

2
) 

f(u2i+1) =6, f(υ2i+1) =2,           (t+1)≤ i ≤ (
3𝑡+1

2
) 

f(u3t-1) =1, f(υ3t-1) = 6, 

f(υ2i) =4,            f(υ2i) = 5 ,             
3𝑡+1

2
 ≤ i ≤2t 

f(u2i-1) =2, f(υ2i-1) = 3 ,           
3𝑡+5

2
 ≤ i ≤ 2t 

f(u4t+1) =4, f(υ4t+1) =5 

f(ui) = 4 , f(υi) =7,              (4t+2)  ≤ i ≤ 
9𝑡+1

2
 

Any one can verify that eight labels and eight edge-weight 

occurs ‘t’ times each and one label and one edge weight 

occurs ‘t+1’ times each. We give below a suitable labelling 

for t= 1,3 which corresponds n=5, 14 respectively. 

CAHIT-9-EQUITABLE LABELING OF C5oK1 

Here p = q = 10, t = 1, n = 5 

v1 

4 

8 

u1 

u2 

7 

0 

u2 

u3 

6 

6 

u3 

u4 

2 

1 

u4 

u5 

3 

5 

u5 

 

CAHIT-9-EQUITABLE LABELING OF C14oK1 

Here p = q = 28, t = 3, n = 14 

v1 

 

3 

8 

u1 

v2 

 

2 

0 

u2 

v3 

 

8 

8 

u3 

v4 

 

3 

0 

u4 

v5 

 

1 

7 

u5 

v6 

 

3 

0 

u6 

v7 

 

1 

7 

u7 

v8 

 

6 

1 

u8 

v9 

 

2 

6 

u9 

v10 

 

5 

4 

u1 

V11 

 

2 

6 

u2 

V12 

 

5 

4 

u3 

V13 

 

5 

4 

u4 

V14 

 

7 

4 

u5 

CASE 3. 2n ≡ 2  (mod 9) 

Let p = q = 2n = 9t+2, t ≥ 2. Implies that t is even number. We 

give a suitable labeling at the end of the proof for t = 2. So let 

t ≥ 4. For Cahit-9-equitability of CnoK1 seven labels will have 

to be used ′t′ times each and two labels will have to e used ′t + 

1′ times each such that seven edge weight will occur t times 

each and two edge weights will occur ′t + 1′ times each. 

We describe below labelling function f : V(CnoK1) → {0,1,2, 

…, 8} as follows. 

f(u1) = 0, f(v1) = 2 

f(u2i) = 8, f(v2i) = 8,         1 ≤ i ≤ t/2 

f(u2i+1) = 0, f(v2i+1) = 3,      1 ≤ i ≤ t/2 

f(u2i) = 7, f(v2i) = 1,           
𝑡+2

2
 ≤ i ≤ t 

f(u2i+1) = 0, f(v2i+1) = 6,        
𝑡+2

2
 ≤ i ≤ t-1 

f(u2i+1) = 1, f(v2i+1) = 5,        t ≤ i ≤ 
3𝑡−4

2
 

f(u2i) = 6, f(v2i) = 2,            t +1 ≤ i ≤ 
3𝑡

2
 

f(u3t-1) = 1, f(v3t-1) = 6 

f(ui) = 2,             f(vi) = 3,            3t+2 ≤ i ≤ 4t-2 

f(u2i+1) = 4, f(v2i+1) = 5,         
3𝑡

2
≤ i ≤ 2t 

f(u4t) = 4, f(v4t) = 3 

f(ui) = 4,             f(vi) = 7,            4t + 2 ≤ i ≤  
9𝑡

2
 

f(𝑢 +12
9𝑡 ) = 7,      f(𝑣 +12

9𝑡 ) = 3 

It is easy to see that seven labels and seven edge weights 

occur ′t′ times each and two labels and two edge weights 
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occur ′t+1′ times each. We give below a suitable labeling for 

t= 2 which corresponds to n = 10 respectively. 

CAHIT-9-EQUITABLE LABELING OF C10oK1 

Here p = q = 20, t = 2, n = 10 

v1 

2 

0 

u1 

v2 

8 

8 

u2 

v3 

7 

0 

u3 

v4 

1 

7 

u4 

v5 

6 

1 

u5 

v6 

2 

6 

u6 

v7 

5 

3 

u7 

v8 

4 

3 

u8 

v9 

4 

5 

u9 

V10 

7 

3 

U10 

 

CASE 4. 2n ≡  3  (mod 9) 

Let p = q = 2n = 9t+3, t ≥ 1. Note that as 2n ≡ 9t+3, t is an 

odd number. We give suitable labelings at the end of the proof 

for t = 1,3. So let t ≥ 5. For cahit-9-equitability of CnoK1, six 

labels will have to be used ′t′ times each and three labels will 

have to be used ′t+1′ times each such that six edge weights 

will occur t times each and three edge weights will occur ′t+1′ 

times each. 

      We define the labelling function f: V(CnoK1) → 

{0,1,2,…,8} as follows 

f(u2i-1) = 0, f(υ2i-1) = 3,    1 ≤ i ≤ 
𝑡+1

2
 

f(u2i) = 8 f(υ2i) = 8,    1 ≤ i ≤ 
𝑡−1

2
 

f(u2i) = 7, f(υ2i) = 1,                 
𝑡+1

2
 ≤ i ≤ t 

f(u2i+1) = 0, f(υ2i+1) = 6,              
𝑡+1

2
 ≤ i ≤ t-1 

f(u2i+1) = 1, f(υ2i+1) = 5,              t ≤ i ≤  
3(𝑡−1)

2
 

f(u2i) = 6, f(υ2i) = 2,                 t+1  ≤ i ≤  
3𝑡+1

2
 

f(u3t) = 1, f(υ3t) = 1 

f(u2i+1) = 4, f(υ2i+1) = 5,             
3𝑡+1

2
 ≤ i ≤ 2t-1 

f(u2i) = 2, f(υ2i) = 3,               
3(𝑡+1)

2
 ≤ i ≤ 2t 

f(ui) = 4,  f(υi) = 7,                4t+1  ≤ i ≤  
9𝑡+1

2
 

f(𝑢9𝑡+3

2

) = 8         f(𝑣9𝑡+3

2

) = 5 

verify easy that six labels and six edge weights occur ′t′ times 

each and three labels and three edge weights occur ′t+1′ times 

each. 

We present below suitable labelling for t=1,3 which 

correspond to n=6,15. 

CAHIT-9-EQUITABLE LABELING OF C6oK1 

Here p = q = 12, t = 1, n = 6 

v1 

3 

0 

u1 

v2 

1 

7 

u2 

v3 

0 

1 

u3 

v4 

2 

6 

u4 

v5 

4 

4 

u5 

v6 

5 

8 

u6 

 

CAHIT-9-EQUITABLE LABELING OF C15oK1 

Herep = q = 30, t =3, n = 15 

v1 

 

3 

0 

u1 

v2 

 

8 

8 

u2 

v3 

 

3 

0 

u3 

v4 

 

1 

7 

u4 

v5 

 

6 

0 

u5 

v6 

 

1 

7 

u6 

v7 

 

5 

1 

u7 

v8 

 

2 

6 

u8 

 

v9 

 

0 

2 

u9 

v10 

 

2 

6 

u1 

V11 

 

5 

4 

u2 

V12 

 

3 

2 

u3 

V13 

 

4 

4 

u4 

V14 

 

7 

4 

u5 

V15 

 

5 

8 

u5 

 

CASE 5. 2n ≡  4  (mod 9) 

Let p = q = 2n = 9t+4, ′t′ is even and number t ≥ 2. We obtain 

suitable labeling at the end of the proof for t = 2. So let t ≥ 4. 

For Cahit-9-equitability of  CnoK1 five labels will have to be 

used ′t′ times each and four labels will have to be used t+1 

times each such that five edge weight will occur ′t′ times each 

four edge weights will occur t+1 times each. 

We define the labeing function f: V(CnoK1) → {0,1,2, …, 8} 

as follows: 

f(u1) = 0, f(υ1) = 2, 

f(u2i) = 8, f(υ2i) = 8,             1 ≤ i ≤ t/2 

f(u2i+1) = 0, f(υ2i+1) = 3,           1 ≤ i ≤ t/2 

f(u2i) = 7, f(υ2i) = 1,                
𝑡

2
+ 1 ≤ 𝑖 ≤ 𝑡 + 1 

f(u2i+1) = 0, f(υ2i+1)=6                
𝑡

2
+ 1 ≤ 𝑖 ≤ 𝑡 

f(u2i+1) = 1, f(υ2i+1)=5,               𝑡 + 1 ≤ 𝑖 ≤
3𝑡

2
− 1 

f(u2i) = 6, f(υ2i) = 2,                𝑡 + 2 ≤ 𝑖 ≤
3𝑡

2
+ 1 

f(u3t+1) = 1, f(υ3t+1) = 6, 

f(u2i+1) = 4, f(υ2i+1) = 5,            
3𝑡

2
+ 1 ≤ 𝑖 ≤ 2𝑡 

f(u2i) = 2, f(υ2i) = 3,               
3𝑡

2
+ 2 ≤ 𝑖 ≤ 2𝑡 
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f(u4t+2) = 4, f(υ4t+2)=3 

fui) = 4,   f(υi) = 7,               4t+3≤ i ≤  
9𝑡+4

2
 

It is easy to verify that five labels and five edge weights 

occurs ′t′ times each and four labels and four edge weights 

occur ′t+1′ times each. We establishing suitable labeling for t 

= 2 which correspond to n = 11. 

CAHIT-9-EQUITABLE LABELING OF C11oK1 

Here p = q = 22, t = 2, n = 11  

v1 

2 

0 

u1 

v2 

8 

8 

u2 

v3 

4 

0 

u3 

v4 

1 

7 

u4 

v5 

3 

0 

u5 

v6 

1 

7 

u6 

v7 

6 

1 

u7 

v8 

2 

6 

u8 

v9 

3 

4 

u9 

V10 

5 

4 

U10 

v11 

8 

5 

u11 

 

CASE 6.2n ≡ 5 (mod 9) 

Let p = q = 2n = 9t+5, t ≥ 1 and t is an odd integer. We give 

suitable labeling at the end of the proof for t = 1,3. So let t ≥ 5. 

For Cahit-9-equitability of  CnoK1 four labels will have to be 

used ′t′ times each and five labels will have to be used ′t+1′ 

times each such that four edge weights will occur ′t′ times 

each and five edge weights will occur ′t+1′ times each. 

We define the labelling function f:V(CnoK1) → {0,1,2, …,8} 

as follows. 

f(u1) = 0, f(υ1) = 2, 

f(u2i) = 8, f(υ2i) = 8,              1 ≤ i ≤ 
𝑡−1

2
 

f(u2i+1) = 0, f(υ2i+1) = 3,           1 ≤ i ≤ 
𝑡−1

2
 

f(u2i) = 7, f(υ2i) = 1,              
𝑡+1

2
 ≤ 𝑖 ≤ 𝑡  

f(u2i+1) = 0,          f(υ2i+1)=6              
𝑡+1

2
 ≤ 𝑖 ≤ 𝑡 − 1 

f(u2i+1) = 1, f(υ2i+1)=5,             𝑡 ≤ 𝑖 ≤ 3(
𝑡−1

2
) 

f(u2i) = 6, f(υ2i) = 2,              𝑡 + 1 ≤ 𝑖 ≤
3𝑡+1

2
 

fuυ3t) = 1, f(υ3t) = 6, 

f(u2i+1) = 4, f(υ2i+1) = 5,           
3𝑡+1

2
≤ 𝑖 ≤ 2𝑡-1 

f(u2i) = 2, f(υ2i) = 3,             3(
 𝑡+1 

2
) ≤ 𝑖 ≤ 2𝑡 

f(u4t+1) = 4, f(υ4t+1)=3 

f(ui) = 4,  f(υi) = 7,              4t+2≤ i ≤  
9𝑡+3

2
 

f(𝑢9𝑡+5

2

) = 8,       f(𝑣9𝑡+5

2

) = 5 

It can be directly verified that four labels and four edge 

weights occurs ′t′ times each and five labels and five edge 

weights occur ′t+1′ times each. We give below suitable 

labelling for t= 1, 3 which correspond to n =7, 16. 

CAHIT-9-EQUITABLE LABELING OF C7oK1 

Here p = q = 14, t = 1, n = 7 

v1 

2 

0 

u1 

v2 

1 

7 

u2 

v3 

6 

1 

u3 

v4 

2 

6 

u4 

v5 

3 

4 

u5 

v6 

7 

4 

u6 

V7 

5 

8 

u7 

CAHIT-9-EQUITABLE LABELING OFC16oK1 

Herep = q = 32, t = 3, n = 16 

u1 

2 

0 

u1 

u2 

8 

8 

u2 

u3 

3 

0 

u3 

u4 

1 

7 

u4 

u5 

6 

0 

u5 

u6 

1 

7 

u6 

u7 

5 

1 

u7 

u8 

2 

6 

u8 

u9 

6 

1 

u9 

 

u10 

2 

6 

u10 

u11 

5 

4 

u11 

u12 

3 

2 

u12 

u13 

3 

4 

u13 

u14 

7 

4 

u14 

u15 

7 

4 

u15 

u16 

5 

8 

u16 

 

CASE 7. 2n  ≡  6  (mod 9) 

Let p = q = 2n = 9t + 6, t is even number t ≥  2. We give 

suitable labeling at the end of the proof t =2, 4. So let t ≥ 

6.For Cahit-9-equitability of CnoK1 three labels will have to 

be used ′t′ times and six labels will have to be used ′t+1′ times 

each such that three edge weights will occur ′t′ times and six 

edge weights will occur ′t+1′ times each. 

   We define the labelling function f:V(CnoK1) → {0,1,2, …, 

8} as follows. 

f(u1) = 0, f(υ1) = 2, 

f(u2i) = 8, f(υ2i) = 8,              1 ≤ i ≤ t/2 

f(u2i+1) = 0, f(υ2i+1) = 3,             1 ≤ i ≤ 
𝑡

2
+ 1 

f(u2i) = 7, f(υ2i)= 1 ,                
𝑡

2
+ 1 ≤ 𝑖 ≤ 𝑡 + 1 

f(u2i+1) = 0, f(υ2i+1)=6,               
𝑡

2
+ 2 ≤ 𝑖 ≤ 𝑡 

f(u2i+1) = 1, f(υ2i+1)=5,               𝑡 + 1 ≤ 𝑖 ≤
3𝑡

2
− 1 

f(u2i) = 6, f(υ2i) = 2,                𝑡 + 2 ≤ 𝑖 ≤
3𝑡

2
+ 1 

f(u3t+1) = 1, f(υ3t+1) = 6, 

f(u2i+1) = 4, f(υ2i+1) = 5 ,           
3𝑡

2
+ 1 ≤ 𝑖 ≤ 2𝑡 
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f(u2i) = 2, f(υ2i) = 3,               
3𝑡

2
+ 2 ≤ 𝑖 ≤ 2𝑡 

f(u4t+2) = 4, f(υ4t+2)=5 

f(ui) = 4,  f(υi) = 7,              4t+3≤ i ≤  
9𝑡+4

2
 

f(𝑢9𝑡+6

2

) = 8,        f(𝑣9𝑡+6

2

) = 3 

It is not hard to verify that three labels and three edge weights 

occurs ′t′ times each and six labels and six edge weights occur 

′t+1′ times each. We have below a suitable labeling for t = 2, 4 

which correspond to n = 12, 21. 

CAHIT-9-EQUITABLE LABELING OF C12oK1 

Here p = q = 24, t = 2, n = 12 

u1 

2 

0 

u1 

u2 

8 

8 

u2 

u3 

3 

0 

u3 

u4 

1 

7 

u4 

u5 

3 

0 

u5 

u6 

1 

7 

u6 

u7 

6 

1 

u7 

u8 

2 

6 

u8 

u9 

5 

7 

u9 

u10 

5 

4 

u10 

u11 

7 

4 

u11 

u12 

3 

8 

u12 

CAHIT-9-EQUITABLE LABELING OF C21oK1 

Here p = q = 42, t = 4, n = 21 

u1 

2 

0 

u1 

u2 

8 

8 

u2 

u3 

3 

0 

u3 

u4 

8 

8 

u4 

u5 

3 

0 

u5 

u6 

1 

7 

u6 

u7 

3 

0 

u7 

u8 

1 

7 

u8 

u9 

6 

0 

u9 

u10 

1 

7 

u10 

u11 

5 

1 

u11 

u12 

2 

6 

u12 

 

u13 

6 

1 

u13 

u14 

2 

6 

u14 

u15 

5 

4 

u15 

u16 

3 

2 

u16 

u17 

5 

4 

u17 

u18 

5 

4 

u18 

u19 

7 

4 

u19 

u20 

7 

4 

u20 

u21 

3 

8 

u21 

 

CASE 8. 2n ≡  7  (mod 9) 

Let p = q = 2n = 9t+7,then clearly ′t′ is odd  ≥ 1. We establish 

suitable labeling at the end of the proof for t = 1, 3. So let t ≥ 

5. For Cahit-9-equitability of CnoK1 two labels will have to be 

used ′t′ times and seven labels will have to be used ′t+1′ times 

each such that two edge weights will occur ′t′ times and seven 

edge weights will occur ′t+1′ times each.  

   We define a function f:V(CnoK1) → {0,1,2,…,8} as follows: 

f(u1) = 0, f(υ1) = 2, 

f(u2i) = 8, f(υ2i) = 8,           1 ≤ i ≤ 
𝑡+1

2
 

f(u2i+1) = 0, f(υ2i+1) = 3,        1 ≤ i ≤ 
𝑡+1

2
 

f(u2i) = 7, f(υ2i) = 1,            
𝑡+3

2
 ≤ 𝑖 ≤ 𝑡 + 1 

f(u2i+1) = 0, f(υ2i+1)=6,           
𝑡+3

2
 ≤ 𝑖 ≤ 𝑡 

f(u2i+1) = 1, f(υ2i+1)=5,           𝑡 + 1 ≤ 𝑖 ≤
3𝑡−1

2
 

fu2i) = 6,  f(υ2i) = 2,            𝑡 + 2 ≤ 𝑖 ≤
3(𝑡+1)

2
 

f(u3t+2) = 1, f(υ3t+2) = 6 

,f(u2i+1) = 4, f(υ2i+1) = 5,         
3(𝑡+1)

2
≤ 𝑖 ≤ 2𝑡 +1 

f(u2i) = 2, f(υ2i) = 3,           
3 𝑡+1 

2
+ 1 ≤ 𝑖 ≤ 2𝑡+1 

f(ui) = 4,  f(υi) = 7,            4(t+1) ≤ i ≤  
9𝑡+7

2
 

One can easily verify that two labels and two edge weights 

occur ′t′ times each and seven labels and seven edge weights 

occur ′t+1′ times each. We obtain below a suitable labeling for 

t=1,3 which corresponds to n=8,17. 

CAHIT-9-EQUITABLE LABELING OF C8oK1 

Here p = q = 16, t = 1, n = 8 

v1 

2 

0 

u1 

v2 

8 

8 

u2 

v3 

3 

0 

u3 

v4 

1 

7 

u4 

v5 

6 

1 

u5 

v6 

2 

6 

u6 

v7 

5 

4 

u7 

v8 

7 

4 

u8 

 

CAHIT-9-EQUITABLE LABELING OF C17oK1 

Here p = q = 34, t = 3, n = 17 

u1 

2 

0 

u1 

u2 

8 

8 

u2 

u3 

3 

0 

u3 

u4 

8 

8 

u4 

u5 

3 

0 

u5 

u6 

1 

7 

u6 

u7 

6 

0 

u7 

u8 

1 

7 

u8 

u9 

5 

1 

u9 

u10 

2 

6 

u10 

 

u11 

6 

1 

u11 

u12 

2 

6 

u12 

u13 

5 

4 

u13 

u14 

3 

2 

u14 

u15 

5 

4 

u15 

u16 

7 

4 

u16 

u17 

7 

4 

u17 

 

CASE 9. 2n  ≡  8  (mod 9) 

 

Let p = q = 2n = 9t+8. It shows that ′t′ is even ≥ 2. We give 

suitable labeling at the end proof for t = 2. So let t ≥ 4. For 

Cahit-9-equitability of CnoK1 one label will have to be used ′t′ 

times and eight labels will have to be used ′t+1′ times each 

such that one edge weight will occur ′t′ times and eight edge 

weights will occur ′t+1′ times each. 

     We define a function f:V(CnoK1) → {0,1,2,…,8} as 

follows: 

f(u1) = 0, f(υ1) = 2, 
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f(u2i) = 8, f(υ2i) = 8,              1 ≤ i ≤ 
𝑡

2
 

f(u2i+1) = 0, f(υ2i+1) = 3,           1 ≤ i ≤ 
𝑡

2
+ 1 

f(u2i) = 7, f(υ2i) = 1,              
𝑡

2
+ 1 ≤ 𝑖 ≤ 𝑡+1 

f(u2i+1) = 0, f(υ2i+1)=6,             
𝑡

2
+ 2 ≤ 𝑖 ≤ 𝑡 

f(u2i+1) = 1, f(υ2i+1)=5,             𝑡 + 1 ≤ 𝑖 ≤
3𝑡

2
− 1 

f(u2i) = 6, f(υ2i) = 2,           𝑡 + 2 ≤ 𝑖 ≤
3𝑡

2
+ 1 

f(u3t+1) = 1, f(υ3t+1) = 6 

f(u2i+1) = 2, f(υ2i+1) = 3,          
3𝑡

2
+ 1 ≤ 𝑖 ≤ 2𝑡 

f(u2i) = 4, f(υ2i) = 5,          
3𝑡

2
+ 2 ≤ 𝑖 ≤ 2𝑡 + 1 

f(u4t+3) = 4, f(υ4t+3)=5 

f(ui) = 4,  f(υi) = 7,           4(t+1) ≤ i ≤  
9𝑡+6

2
 

f(𝑢9𝑡+8

2

) = 8,        f(𝑣9𝑡+8

2

) = 6 

It is easily verify that one label and one edge weight occur ′t′ 

times each and eight labels and eight edge weight occur ′t+1′ 

times each. We give below a suitable labeling for t=2 which 

correspond on n = 13. 

CAHIT-9-EQUITABLE LABELING OF C13oK1 

Here p = q =2n, t = 2, n = 13 

u1 

2 

0 

u1 

u2 

8 

8 

u2 

u3 

3 

0 

u3 

u4 

1 

7 

u4 

u5 

3 

0 

u5 

u6 

1 

7 

u6 

u7 

6 

1 

u7 

u8 

2 

6 

u8 

u9 

3 

2 

u9 

u10 

5 

4 

u10 

u11 

5 

4 

u11 

u12 

7 

4 

u12 
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