Cahit-9-Equitability of Coronas C_nok₁

Mallikarjun Ghaleppa¹, Danappa G Akka²

¹Department of Mathematics, Sri Krishna Institute of Technology, Bengaluru, Karnataka, India ²Department of Mathematics, Alliance College of Engineering and Design, Alliance University, Bengaluru, Karnataka, India.

Abstract. For any graph G and any positive integer k assign vertex labels from $\{0, 1, 2, ..., k-1\}$ so that when the edge labels are induced by the absolute value of difference of the vertex labels, the number of vertices labeled with i and the number of vertices labeled with j differ by atmost one and the number of edges labeled with i and the number of edges labeled with j differ by at most one. Cahit called a graph with such an assignment of labels k-equitable. In this paper, we show that the corona graphs $C_n o K_l$ are 9-equitable as per cahit's definition of k-equitablity.

Keywords: labeling, Cahit-k-equitable, Corona Graph.

2010 Mathematics Subject Classification: Primary 05C78; Secondary 05C76.

I. INTRODUCTION

labelling of the vertices of a graph G is an assignment of distinct natural numbers to the vertices of G. every labeling induces a natural labeling of the edges: The label of an edge v is the absolute value of the difference of the labels of v and v. Bloom [3] defined a labelling of the vertices of a graph to be k-equitable if in the induced labelling of its edges, every label occurs exactly k-times, if at all. Furthermore a k-equitable labeling of a graph of order p is said to be minimal if the vertices are labeled with $1,2,\ldots,p$.

Bloom [3] posed the following question: Is the condition that k is a proper devisor of p sufficient for the cycle C_p to have a minimal k-equitable labeling. Wojeiechowski [7] gave a positive answer to this question. Barrientos, Dejter and Hevia [4] have shown that forests of even size are 2-equitable. They also prove that for k=3 or k=4 a forest F of size kw is k-equitable if and only if the maximum degree of F is at most 2w and that if 3 divides the size of the double star $S_{m,n} l \le m \le n$), then $S_{m,n}$ is 3-equitable if and only if $\frac{q}{3} \le m \le \frac{n}{2} \le n$. Here $S_{m,n}$ is K_2 with n pendent edges attached at one end and n pendent edges attached at the other end. They discussed the k-equitability of forests for $k \ge 5$ and characterized all caterpillars of diameter 2 that are k-equitable for all possible values of k.

The corona $G_1 \circ G_2$ of two graphs G_1 and G_2 was defined Frucht and Harary [5] as the graph G obtained by taking one copy of G_1 which has p_1 vertices and p_1 copies of G_2 and then joining the i^{th} vertex of G_1 to every vertex in the i^{th} copy of G_2 .

In [6] Vasanti Bhat-Nayak and Shanta Telang prove that the corona graphs $C_n o K_1$ are k-equitables as per cahit's definition of k-equitability k=2,3,4,5,6. In [1] D G Akka and Sanjay Roy proved that the corona graphs $C_n o K_1$ are 7-equitable. In [2] D

G Akka and et al proved that the corona graphs $C_n o K_1$ are 8-equitable. Here we prove that the corona $C_n o K_1$ is cahit-9-equitable.

II. CAHIT-9-EQUITABILITY OF CORONAS

In this paper we will use the following notations

 $V(C_n \circ K_1) = \{u_1, u_2, \ldots, u_n, \upsilon_1, \upsilon_2, \ldots, \upsilon_n\}$ where $u_1, u_2, \ldots, u_n, u_1$ is the cycle C_n and υ_i is the pendent vertex adjacent to u_i , $1 \le i \le n$.

Theorem. All coronas are Cahit-9-equitable.

Proof. For Cahit-9-equitability the label set as well as the edge weight set is $\{0,1,2,...,8\}$. We have p=q=2n where $p=|V(C_noK_I)|$, $q=|E(C_noK_I)|$. We consider nine different cases.

CASE 1. $2n \equiv 0 \pmod{9}$

Let p = q = 2n = 9t, $t \ge 2$. Note that 9t = 2n implies t is even. We describe labeling at the end of the proof for t = 2, so let $t \ge 4$. For Cahit-9-equitability of $(C_n \circ K_l)$ each label will have to be used t-times such that each edge weight occur t times.

We define the labelling function $f:V(C_noK_I) \rightarrow \{0,1,2,...,8\}$ as follows.

$$f(u_{1}) = 0 \qquad f(v_{1}) = 2$$

$$f(u_{2i}) = 8 \qquad f(v_{2i}) = 8 \qquad 1 \le i \le t/2$$

$$f(u_{2i+1}) = 0 \qquad f(v_{2i+1}) = 3 \qquad 1 \le i \le t/2$$

$$f(u_{2i}) = 7, \qquad f(v_{2i}) = 1, \qquad \frac{t}{2} + 1 \le i \le t$$

$$f(u_{2i+1}) = 0, \qquad f(v_{2i+1}) = 6, \qquad \frac{t}{2} + 1 \le i \le t-1$$

$$f(u_{2i+1}) = 1, \qquad f(v_{2i+1}) = 5, \qquad t \le i \le \frac{3t}{2} - 2$$

$$f(u_{2i}) = 6, \qquad f(v_{2i}) = 2, \qquad t + 1 \le i \le \frac{3t}{2}$$

$$f(u_{3i-1}) = 1 \qquad f(v_{3i-1}) = 6$$

$$f(u_{2i+1}) = 4, \qquad f(v_{2i}) = 3, \qquad \frac{3t}{2} \le i \le 2t - 2$$

$$f(u_{2i}) = 2, \qquad f(v_{2i}) = 3, \qquad \frac{3t}{2} + 1 \le i \le 2t - 1$$

$$f(u_{i}) = 4, \qquad f(v_{i}) = 5, \qquad 4t - 1 \le i \le 4t$$

$$f(u_{i}) = 4, \qquad f(v_{i}) = 7, \qquad 4t + 1 \le i \le \frac{9t}{2} - 1$$

$$f(u_{\frac{9t}{2}}) = 7$$
, $f(v_{\frac{9t}{2}}) = 3$

It is not hard to verify that each label and each edge-weight occurs exactly t times. We obtain a suitable labelling for t = 2 which corresponds to n = 9 as follows.

CAHIT-9-EQUITABLE LABELING OF C90K1

Here p = q = 18, t = 2, n = 9

\mathbf{v}_1	\mathbf{v}_2	\mathbf{v}_3	v_4	V ₅	v_6	\mathbf{v}_7	v_8	V ₉
2	8	3	1	6	2	5	5	3
0	8	0	7	1	6	4	4	7
\mathbf{u}_1	u_2	u_3	u_4	u_5	u_6	\mathbf{u}_7	u_8	\mathbf{u}_9

$CASE\ 2.\ 2n \equiv 1 \pmod{9}$

Suppose p=q=2n=9t+1, $t\geq 1$. It is easy to see that as 2n=9t+1, t is an odd integer. We select suitable labeling at the end of the proof for t=1 and 3. So let $t\geq 5$ for cahit-9-equitability of $C_n o K_1$, 8 labels will have to be utilised t times each and one label will have to be utilised t+1 times such that eight edge weight will occur t+1 times each and one edge weight will occur t+1 times.

We given below the labeling function f: $V(C_n \circ K_1) \rightarrow \{0,1,...,8\}$

$$f(u_{1}) = 8, \qquad f(v_{1}) = 3$$

$$f(u_{2}) = 0, \qquad f(v_{2}) = 2$$

$$f(u_{2i+1}) = 8, \qquad f(v_{2i+1}) = 8, \qquad I \le i \le \frac{t-1}{2}$$

$$f(u_{2i+2}) = 0, \qquad f(v_{2i+2}) = 3, \qquad I \le i \le \frac{t+1}{2}$$

$$f(u_{2i+1}) = 7, \qquad f(v_{2i+1}) = I, \qquad \frac{t+1}{2} \le i \le t$$

$$f(u_{2i}) = 0, \qquad f(v_{2i}) = 6, \qquad \frac{t+5}{2} \le i \le t$$

$$f(u_{2i}) = 1, \qquad f(v_{2i}) = 5, \qquad (t+1) \le i \le 3(\frac{t-1}{2})$$

$$f(u_{2i+1}) = 6, \qquad f(v_{2i+1}) = 2, \qquad (t+1) \le i \le (\frac{3t+1}{2})$$

$$f(u_{3t-1}) = I, \qquad f(v_{3t-1}) = 6,$$

$$f(v_{2i}) = 4, \qquad f(v_{2i}) = 5, \qquad \frac{3t+1}{2} \le i \le 2t$$

$$f(u_{2i-1}) = 2, \qquad f(v_{2i-1}) = 3, \qquad \frac{3t+5}{2} \le i \le 2t$$

$$f(u_{4t+1}) = 4, \qquad f(v_{4t+1}) = 5$$

$$f(u_{i}) = 4, \qquad f(v_{i}) = 7, \qquad (4t+2) \le i \le \frac{9t+1}{2}$$

Any one can verify that eight labels and eight edge-weight occurs 't' times each and one label and one edge weight occurs 't+1' times each. We give below a suitable labelling for t=1,3 which corresponds n=5,14 respectively.

CAHIT-9-EQUITABLE LABELING OF C50K1

Here
$$p = q = 10$$
, $t = 1$, $n = 5$

v_I	u_2	u_3	u_4	u_5
4	7	6	2	3
8	0	6	1	5
u_I	u_2	u_3	u_4	u_5

CAHIT-9-EQUITABLE LABELING OF $C_{14}oK_1$

Here p = q = 28, t = 3, n = 14

$$v_1$$
 v_2 v_3 v_4 v_5 v_6 v_7 v_8 v_9 v_{10} v_{11} v_{12} v_{13} v_{14}

CASE 3. $2n \equiv 2 \pmod{9}$

Let p = q = 2n = 9t+2, $t \ge 2$. Implies that t is even number. We give a suitable labeling at the end of the proof for t = 2. So let $t \ge 4$. For Cahit-9-equitability of $C_n o K_1$ seven labels will have to be used 't' times each and two labels will have to e used 't + 1' times each such that seven edge weight will occur t times each and two edge weights will occur 't + 1' times each.

We describe below labelling function $f: V(C_n \circ K_1) \to \{0,1,2,\dots,8\}$ as follows.

$$f(u_{1}) = 0, f(v_{1}) = 2$$

$$f(u_{2i}) = 8, f(v_{2i}) = 8, 1 \le i \le t/2$$

$$f(u_{2i+1}) = 0, f(v_{2i+1}) = 3, 1 \le i \le t/2$$

$$f(u_{2i}) = 7, f(v_{2i}) = 1, \frac{t+2}{2} \le i \le t$$

$$f(u_{2i+1}) = 0, f(v_{2i+1}) = 6, \frac{t+2}{2} \le i \le t-1$$

$$f(u_{2i+1}) = 1, f(v_{2i+1}) = 5, t \le i \le \frac{3t-4}{2}$$

$$f(u_{2i}) = 6, f(v_{2i}) = 2, t+1 \le i \le \frac{3t}{2}$$

$$f(u_{3t-1}) = 1, f(v_{3t-1}) = 6$$

$$f(u_{i}) = 2, f(v_{i}) = 3, 3t+2 \le i \le 4t-2$$

$$f(u_{2i+1}) = 4, f(v_{2i+1}) = 5, \frac{3t}{2} \le i \le 2t$$

$$f(u_{4t}) = 4, f(v_{4t}) = 3$$

$$f(u_{i}) = 4, f(v_{i}) = 7, 4t + 2 \le i \le \frac{9t}{2}$$

 $f(u_{9t+1}) = 7$, $f(v_{9t+1}) = 3$

It is easy to see that seven labels and seven edge weights occur 't' times each and two labels and two edge weights

occur 't+1' times each. We give below a suitable labeling for t=2 which corresponds to n=10 respectively.

CAHIT-9-EQUITABLE LABELING OF $C_{10}oK_1$

Here p = q = 20, t = 2, n = 10

vl	v2	v3	v4	v5	v6	v7	v8	v9	V10
2	8	7	1	6	2	5	4	4	7
0	8	0	7	1	6	3	3	5	3
ul	u2	u3	u4	u5	u6	u7	u8	u9	U10

$CASE 4. \ 2n \equiv 3 \pmod{9}$

Let p = q = 2n = 9t+3, $t \ge 1$. Note that as 2n = 9t+3, t is an odd number. We give suitable labelings at the end of the proof for t = 1,3. So let $t \ge 5$. For cahit-9-equitability of $C_n o K_1$, six labels will have to be used 't' times each and three labels will have to be used 't+1' times each such that six edge weights will occur t times each and three edge weights will occur 't+1' times each.

We define the labelling function f: $V(C_n \circ K_1) \rightarrow \{0,1,2,...,8\}$ as follows

$f(u_{2i-1})=0,$	$f(v_{2i-1})=3,$	$1 \le i \le \frac{t+1}{2}$
$f(u_{2i})=8$	$f(v_{2i})=8,$	$1 \le i \le \frac{t-1}{2}$
$f(u_{2i})=7,$	$f(v_{2i})=1,$	$\frac{t+1}{2} \le i \le t$
$f(u_{2i+1})=0,$	$f(v_{2i+1})=6,$	$\frac{t+1}{2} \le i \le t-1$
$f(u_{2i+1})=1,$	$f(v_{2i+1})=5,$	$t \le i \le \frac{3(t-1)}{2}$
$f(u_{2i})=6,$	$f(v_{2i})=2,$	$t+1 \le i \le \frac{3t+1}{2}$
$f(u_{3t})=1,$	$f(v_{3t})=1$	
$f(u_{2i+1})=4,$	$f(v_{2i+1})=5,$	$\frac{3t+1}{2} \le i \le 2t-1$
$f(u_{2i})=2,$	$f(v_{2i})=3,$	$\frac{3(t+1)}{2} \le i \le 2t$
$f(u_i)=4,$	$f(v_i)=7,$	$4t+1 \le i \le \frac{9t+1}{2}$
$f(u_{\frac{9t+3}{2}}) = 8$	$f(v_{\frac{9t+3}{2}}) = 5$	

verify easy that six labels and six edge weights occur 't' times each and three labels and three edge weights occur 't+1' times each

We present below suitable labelling for t=1,3 which correspond to n=6,15.

CAHIT-9-EQUITABLE LABELING OF $C_6 o K_1$

Here p = q = 12, t = 1, n = 6

v_1	\mathbf{v}_2	\mathbf{v}_3	\mathbf{v}_4	V_5	v_6
3	1	0	2	4	5
0	7	1	6	4	8
\mathbf{u}_1	\mathbf{u}_2	u_3	u_4	\mathbf{u}_5	u_6

CAHIT-9-EQUITABLE LABELING OF $C_{15}oK_1$

Here p = q = 30, t = 3, n = 15

v_I	v_2	v_3	V ₄	V ₅	<i>v</i> ₆	v_7	v_8
3	8	3	1	6	1	5	2
0	8	0	7	0	7	1	6
u_I	u_2	u_3	и4	u_5	u_6	<i>u</i> ₇	u_8

V9	<i>v</i> ₁₀	V11	VI2	V13	V14	V15
0	2	5	3	4	7	5
2	6	4	2	4	4	8
и9	u_I	u_2	u_3	и4	u ₅	<i>u</i> ₅

CASE 5. $2n \equiv 4 \pmod{9}$

 $f(u_1) = 0, \qquad f(v_1) = 2,$

Let p = q = 2n = 9t+4, 't' is even and number $t \ge 2$. We obtain suitable labeling at the end of the proof for t = 2. So let $t \ge 4$. For Cahit-9-equitability of $C_n o K_1$ five labels will have to be used 't' times each and four labels will have to be used t+1 times each such that five edge weight will occur 't' times each four edge weights will occur t+1 times each.

We define the labeling function f: $V(C_n \circ K_1) \rightarrow \{0,1,2,...,8\}$ as follows:

$f(u_{2i})=8,$	$f(v_{2i})=8,$	$1 \le i \le t/2$
$f(u_{2i+1})=0,$	$f(v_{2i+1})=3,$	$1 \le i \le t/2$
$f(u_{2i})=7,$	$f(v_{2i})=1,$	$\frac{t}{2} + 1 \le i \le t + 1$
$f(u_{2i+1})=0,$	$f(v_{2i+1})=6$	$\frac{t}{2} + 1 \le i \le t$
$f(u_{2i+1})=1,$	$f(v_{2i+1})=5,$	$t+1 \le i \le \frac{3t}{2} - 1$
$f(u_{2i})=6,$	$f(v_{2i})=2,$	$t+2 \le i \le \frac{3t}{2}+1$
$f(u_{3t+1})=1,$	$f(v_{3t+1})=6,$	
$f(u_{2i+1})=4,$	$f(v_{2i+1})=5,$	$\frac{3t}{2} + 1 \le i \le 2t$
$f(u_{2i})=2,$	$f(v_{2i})=3,$	$\frac{3t}{2} + 2 \le i \le 2t$

$$f(u_{4t+2}) = 4,$$
 $f(v_{4t+2}) = 3$

$$f(v_i) = 4,$$
 $f(v_i) = 7,$ $4t+3 \le i \le \frac{9t+4}{2}$

It is easy to verify that five labels and five edge weights occurs 't' times each and four labels and four edge weights occur 't+1' times each. We establishing suitable labeling for t = 2 which correspond to n = 11.

CAHIT-9-EQUITABLE LABELING OF $C_{11}OK_1$

Here p = q = 22, t = 2, n = 11

\mathbf{v}_1	\mathbf{v}_2	\mathbf{v}_3	V_4	\mathbf{v}_5	v_6	\mathbf{v}_7	v_8	V 9	V10	v11
2	8	4	1	3	1	6	2	3	5	8
0	8	0	7	0	7	1	6	4	4	5
u_1	\mathbf{u}_2	u_3	u_4	u_5	u_6	u ₇	u_8	u ₉	U10	u11

$CASE\ 6.2n \equiv 5 \pmod{9}$

Let p = q = 2n = 9t+5, $t \ge 1$ and t is an odd integer. We give suitable labeling at the end of the proof for t = 1,3. So let $t \ge 5$. For Cahit-9-equitability of $C_n o K_1$ four labels will have to be used 't' times each and five labels will have to be used 't+1' times each such that four edge weights will occur 't' times each and five edge weights will occur 't+1' times each.

We define the labelling function $f:V(C_n \circ K_1) \to \{0,1,2,...,8\}$ as follows.

$$f(u_1)=0, f(v_1)=2,$$

$$f(u_{2i}) = 8,$$
 $f(v_{2i}) = 8,$ $1 \le i \le \frac{t-1}{2}$

$$f(u_{2i+1}) = 0,$$
 $f(v_{2i+1}) = 3,$ $1 \le i \le \frac{t-1}{2}$

$$f(u_{2i}) = 7,$$
 $f(v_{2i}) = 1,$ $\frac{t+1}{2} \le i \le t$

$$f(u_{2i+1}) = 0,$$
 $f(v_{2i+1}) = 6$ $\frac{t+1}{2} \le i \le t-1$

$$f(u_{2i+1}) = 1,$$
 $f(v_{2i+1}) = 5,$ $t \le i \le 3(\frac{t-1}{2})$

$$f(u_{2i}) = 6,$$
 $f(v_{2i}) = 2,$ $t + 1 \le i \le \frac{3t+1}{2}$

$$f(v_{3t})=1, f(v_{3t})=6,$$

$$f(u_{2i+1}) = 4,$$
 $f(v_{2i+1}) = 5,$ $\frac{3t+1}{2} \le i \le 2t-1$

$$f(u_{2i}) = 2,$$
 $f(v_{2i}) = 3,$ $3(\frac{(t+1)}{2}) \le i \le 2t$

$$f(u_{4t+1}) = 4,$$
 $f(v_{4t+1}) = 3$

$$f(u_i) = 4,$$
 $f(v_i) = 7,$ $4t + 2 \le i \le \frac{9t + 3}{2}$

$$f(u_{\frac{9t+5}{2}}) = 8, \qquad f(v_{\frac{9t+5}{2}}) = 5$$

It can be directly verified that four labels and four edge weights occurs 't' times each and five labels and five edge

weights occur 't+1' times each. We give below suitable labelling for t=1, 3 which correspond to n=7, 16.

CAHIT-9-EQUITABLE LABELING OF C70K1

Here p = q = 14, t = 1, n = 7

v_1	\mathbf{v}_2	V ₃	\mathbf{v}_4	V ₅	v_6	V7
2	1	6	2	3	7	5
0	7	1	6	4	4	8
\mathbf{u}_1	\mathbf{u}_2	\mathbf{u}_3	u_4	\mathbf{u}_5	u_6	\mathbf{u}_7

CAHIT-9-EQUITABLE LABELING OFC₁₆0K₁

Here
$$p = q = 32$$
, $t = 3$, $n = 16$

u_1	u_2	u_3	u_4	u_5	u_6	u_7	u_8	u 9
2	8	3	1	6	1	5	2	6
0	8	0	7	0	7	1	6	1
u_1	u_2	u_3	u_4	u_5	u_6	u_7	u_8	u 9

u_{10}	u_{11}	u_{12}	u_{13}	u_{14}	u_{15}	u_{16}
2	5	3	3	7	7	5
6	4	2	4	4	4	8
u_{10}	u_{11}	u_{12}	u_{13}	u_{14}	u_{15}	u_{16}

$CASE 7. 2n \equiv 6 \pmod{9}$

Let p = q = 2n = 9t + 6, t is even number $t \ge 2$. We give suitable labeling at the end of the proof t = 2, 4. So let $t \ge 6$. For Cahit-9-equitability of $C_n o K_1$ three labels will have to be used 't' times and six labels will have to be used 't+1' times each such that three edge weights will occur 't' times and six edge weights will occur 't+1' times each.

We define the labelling function $f:V(C_noK_1) \to \{0,1,2,...,8\}$ as follows.

$$f(u_1) = 0, \qquad f(v_1) = 2,$$

$$f(u_{2i}) = 8,$$
 $f(v_{2i}) = 8,$ $1 \le i \le t/2$

$$f(u_{2i+1}) = 0,$$
 $f(v_{2i+1}) = 3,$ $1 \le i \le \frac{t}{2} + 1$

$$f(u_{2i}) = 7,$$
 $f(v_{2i}) = 1,$ $\frac{t}{2} + 1 \le i \le t + 1$

$$f(u_{2i+1}) = 0,$$
 $f(v_{2i+1}) = 6,$ $\frac{t}{2} + 2 \le i \le t$

$$f(u_{2i+1}) = I,$$
 $f(v_{2i+1}) = 5,$ $t + 1 \le i \le \frac{3t}{2} - 1$

$$f(u_{2i}) = 6,$$
 $f(v_{2i}) = 2,$ $t + 2 \le i \le \frac{3t}{2} + 1$

$$f(u_{3t+1})=1,$$
 $f(v_{3t+1})=6,$

$$f(u_{2i+1}) = 4$$
, $f(v_{2i+1}) = 5$, $\frac{3t}{2} + 1 \le i \le 2t$

$$f(u_{2i}) = 2, f(v_{2i}) = 3, \frac{3t}{2} + 2 \le i \le 2t$$

$$f(u_{4t+2}) = 4, f(v_{4t+2}) = 5$$

$$f(u_i) = 4, f(v_i) = 7, 4t + 3 \le i \le \frac{9t + 4}{2}$$

$$f(u_{\frac{9t+6}{2}}) = 8, f(v_{\frac{9t+6}{2}}) = 3$$

It is not hard to verify that three labels and three edge weights occurs 't' times each and six labels and six edge weights occur 't+1' times each. We have below a suitable labeling for t = 2, 4 which correspond to n = 12, 21.

CAHIT-9-EQUITABLE LABELING OF $C_{12}oK_1$

Here p = q = 24, t = 2, n = 12

u_1	u_2	u_3	u_4	u_5	u_6	u_7	u_8	u_9	u_{10}	u_{11}	u_{12}
2	8	3	1	3	1	6	2	5	5	7	3
0	8	0	7	0	7	1	6	7	4	4	8
u_1	u_2	u_3	u_4	и5	<i>u</i> ₆	u_7	u_8	u 9	u_{10}	u_{11}	u_{12}

CAHIT-9-EQUITABLE LABELING OF $C_{21}oK_1$

Here p = q = 42, t = 4, n = 21

u_1	u_2	u_3	u_4	u_5	u_6	u_7	u_8	И9	u_{10}	u_{11}	u_{12}
2	8	3	8	3	1	3	1	6	1	5	2
0	8	0	8	0	7	0	7	0	7	1	6
u_1	u_2	u_3	u_4	u_5	u_6	u_7	u_8	u ₉	u_{10}	u_{11}	u_{12}

u_{13}	u_{14}	u_{15}	u_{16}	u_{17}	u_{18}	u_{19}	u_{20}	u_{21}
6	2	5	3	5	5	7	7	3
1	6	4	2	4	4	4	4	8
u_{13}	u_{14}	u_{15}	u_{16}	u_{17}	u_{18}	u_{19}	u_{20}	u_{21}

CASE 8. $2n \equiv 7 \pmod{9}$

Let p = q = 2n = 9t+7, then clearly 't' is odd ≥ 1 . We establish suitable labeling at the end of the proof for t = 1, 3. So let $t \geq 5$. For Cahit-9-equitability of $C_n o K_1$ two labels will have to be used 't' times and seven labels will have to be used 't+1' times each such that two edge weights will occur 't' times and seven edge weights will occur 't+1' times each.

We define a function $f: V(C_n \circ K_1) \to \{0,1,2,...,8\}$ as follows:

$$f(u_1) = 0, f(v_1) = 2,$$

$$f(u_{2i}) = 8, f(v_{2i}) = 8, 1 \le i \le \frac{t+1}{2}$$

$$f(u_{2i+1}) = 0, f(v_{2i+1}) = 3, 1 \le i \le \frac{t+1}{2}$$

$$f(u_{2i}) = 7, f(v_{2i}) = 1, \frac{t+3}{2} \le i \le t+1$$

$$f(u_{2i+1}) = 0, f(v_{2i+1}) = 6, \frac{t+3}{2} \le i \le t$$

$$f(u_{2i+1}) = 1, f(v_{2i+1}) = 5, t+1 \le i \le \frac{3t-1}{2}$$

$$f(u_{2i}) = 6, f(v_{2i}) = 2, t+2 \le i \le \frac{3(t+1)}{2}$$

$$f(u_{3t+2}) = 1, f(v_{3t+2}) = 6$$

$$f(u_{2i+1}) = 4, f(v_{2i+1}) = 5, \frac{3(t+1)}{2} \le i \le 2t+1$$

$$f(u_{2i}) = 2, f(v_{2i}) = 3, \frac{3(t+1)}{2} + 1 \le i \le 2t+1$$

$$f(u_i) = 4, f(v_i) = 7, 4(t+1) \le i \le \frac{9t+7}{2}$$

One can easily verify that two labels and two edge weights occur 't' times each and seven labels and seven edge weights occur 't+1' times each. We obtain below a suitable labeling for t=1,3 which corresponds to n=8,17.

CAHIT-9-EQUITABLE LABELING OF C₈OK₁

Here p = q = 16, t = 1, n = 8

\mathbf{v}_1	\mathbf{v}_2	\mathbf{v}_3	v_4	V_5	v_6	\mathbf{v}_7	v_8
2	8	3	1	6	2	5	7
0	8	0	7	1	6	4	4
\mathbf{u}_1	\mathbf{u}_2	u_3	u_4	u_5	u_6	u ₇	u_8

CAHIT-9-EQUITABLE LABELING OF $C_{17}OK_1$

Here p = q = 34, t = 3, n = 17

u_1	u_2	u_3	u_4	u_5	u_6	u_7	u_8	u 9	u_{10}
2	8	3	8	3	1	6	1	5	2
0	8	0	8	0	7	0	7	1	6
u_1	u_2	и3	и4	и5	и ₆	<i>u</i> ₇	u_8	и 9	u_{10}

ĺ	u_{11}	u_{12}	u_{13}	u_{14}	u_{15}	u_{16}	u_{17}
	6	2	5	3	5	7	7
	1	6	4	2	4	4	4
	u_{11}	u_{12}	u_{13}	u_{14}	u_{15}	u_{16}	u_{17}

 $CASE 9. 2n \equiv 8 \pmod{9}$

Let p = q = 2n = 9t+8. It shows that 't' is even ≥ 2 . We give suitable labeling at the end proof for t = 2. So let $t \geq 4$. For Cahit-9-equitability of $C_n o K_1$ one label will have to be used 't' times and eight labels will have to be used 't+1' times each such that one edge weight will occur 't' times and eight edge weights will occur 't+1' times each.

We define a function $f:V(C_noK_1) \rightarrow \{0,1,2,...,8\}$ as follows:

$$f(u_1) = 0,$$
 $f(v_1) = 2,$

$f(u_{2i})=8,$	$f(v_{2i})=8,$	$1 \le i \le \frac{t}{2}$
$f(u_{2i+1})=0,$	$f(v_{2i+1})=3,$	$1 \le i \le \frac{t}{2} + 1$
$f(u_{2i})=7,$	$f(v_{2i})=1,$	$\frac{t}{2} + 1 \le i \le t + l$
$f(u_{2i+1})=0,$	$f(v_{2i+1})=6,$	$\frac{t}{2} + 2 \le i \le t$
$f(u_{2i+1})=1,$	$f(v_{2i+1})=5,$	$t+1 \le i \le \frac{3t}{2} - 1$
$f(u_{2i})=6,$	$f(v_{2i})=2,$	$t+2 \le i \le \frac{3t}{2}+1$
$f(u_{3t+1})=1,$	$f(v_{3t+1})=6$	
$f(u_{2i+1})=2,$	$f(v_{2i+1})=3,$	$\frac{3t}{2} + 1 \le i \le 2t$
$f(u_{2i})=4,$	$f(v_{2i})=5,$	$\frac{3t}{2} + 2 \le i \le 2t + 1$
$f(u_{4t+3})=4,$	$f(v_{4t+3})=5$	
$f(u_i)=4,$	$f(v_i)=7,$	$4(t+1) \le i \le \frac{9t+6}{2}$
$f(u_{\frac{9t+8}{2}})=8,$	$f(v_{\frac{9t+8}{2}}) = 6$	

It is easily verify that one label and one edge weight occur 't' times each and eight labels and eight edge weight occur 't+1' times each. We give below a suitable labeling for t=2 which correspond on n=13.

CAHIT-9-EQUITABLE LABELING OF $C_{13}oK_1$

Here p = q = 2n, t = 2, n = 13

u_1	u_2	u_3	u_4	u_5	u_6	u_7	u_8	и9	u_{10}	u_{11}	u_{12}
2	8	3	1	3	1	6	2	3	5	5	7
0	8	0	7	0	7	1	6	2	4	4	4
u_1	u_2	<i>u</i> ₃	u_4	<i>u</i> ₅	u_6	<i>u</i> ₇	u_8	и9	u_{10}	u_{11}	u_{12}

REFERENCES

- [1]. D G Akka and Sanjay Roy, Cahit-7-equitability of corona $C_n o K_1$.International journal of mathematical sciences and Applications, Vol. 1 No. 3 (2011) 1609-1618.
- [2]. D G Akka and Dayanand G.K. Cahit-8-equitability of corona $C_n o K_1$. International journal of research in Engineering and Technology, Vol.03 NCRIET (2014)
- [3]. Bloom, problem posed at the Graph theory meeting of the New York Academy of Science, Nov. (1989).
- [4]. Barrientos, Dejter and Hevia, Equitable labelings of forests Comin, and Graph theory I (1995) 1-26.
- [5]. R Frucht and F Haray, On the corona of two graphs, Aequationes Mathematicae (1971).
- [6]. Vasanti N Bhat Nayak and ShantaTelang, Cahit-equitability of Coronas, Ars Combinatoria, Vol. 71 (2004) 3-32.
- [7]. J. Wojeiechowski, Equitable of cycles, J. of Graph Theory Vol. 17, No. 1 (1993) 531-547.