International Conference on Multidisciplinary Research & Practice

Page | 590

A Comparative Study of Performance of
A*algorithm and AO* algorithm for Solving
Travelling Salesman Problem

Shraddha Ramteke

M.Tech Research Scholar, CSE
Chattrapati Shivaji Institute of Technology
Durg, India

Abstract- According to travelling salesman problem (TSP)
given a number of cities and the distances between each couple
of cities, the aim is to find the smallest possible route that goes
to each city exactly once and returns to the origin city i.e., find
a least cost Hamiltonian cycle It is definitely an NP-hard
problem, important in operations investigation and theoretical
computer scientific discipline. In the theory involving
computational complexity, the decision version in the TSP
where, given any length L, the task is to decide whether the
graph offers any tour shorter than L belongs to the class of NP-
complete issues. Thus, it is possible which the worst-case
running time for virtually every algorithm for the TSP
increases superpolynomially or perhaps exponentially with the
quantity of cities. Heuristic search is definitely an Al search
technique that employs heuristic to its moves. Heuristic is a
rule of thumb that probably leads into a solution. Heuristics
play a major role in search strategies because of exponential
nature of the most extremely problems. Heuristics help to
reduce the quantity of alternatives from an exponential
number into a polynomial number. In Al, heuristic search
incorporates a general meaning, and an increasingly
specialized technical meaning. Within a general sense, the term
heuristic is utilized for any advice which is often effective, but
just isn't guaranteed to work always. The major aim of this
proposed research work is to analyze and compare the
performance of A* and AO* heuristic search algorithms for
solving TSP on the basis of providing the optimal path
according to Computational Time and runtime Memory
Consumption.

Keywords—A* algorithm, AO algorithm*, Travelling Salesman
Problem (TSP).

. INTRODUCTION

Travelling Salesman Problem is a combinational
problem consisting of some cities and some edges
connecting one city to other. TSP can be represented by a
graph G (V, E), where V is the set of vertices (cities) and E
is the set of edges(path) between each of the two vertices
specific to the graph. TSP is to discover the shortest path in
the graph G setting up a least cost Hamiltonian Cycle. If
there exists a path between the two cities i and j, then the
distance between these cities can be computed as-.

g = J(xi— %)~ o —)?

l'_i'=.\|

TSP deals with real time scenario for a traveling salesman,
where the most important for him to follow the shortest and
optimal path having the minimum cost so as to gain
maximum profit and to deliver the goods lesser time as
much as possible. Path optimization is one of the major

Deepty Dubey

Associate Professor, CSE
Chattrapati Shivaji Institute of Technology
Durg, India

problems while travelling from the source to destination
city visiting each city only once. Path can be calculated
using many strategies but to decide the best possible
strategy according to the number of cities is a difficult task.

TSP Heuristic: Whenever the salesman is at town i this
individual chooses as their next city i. e., the city j which is
why the c(i, j) charge, is the bare minimum among all c(i, k)
charges, where k will be the pointers of the city the
salesman has not visited yet. In case more than one city
gives the particular minimum cost, the city with the smaller
Kk is going to be chosen. This greedy algorithm selects the
lowest priced visit in each step and won't care whether this
will lead to a correct solution or not.

Input
Network formed from n cities
Cost c(i,j) of traveling from one city to next city,
where i &j=1,23..,n.
Start with initial city.
Output
A least cost Hamiltonian cycle.

1. PROPOSED METHODOLOGY

A. Applying TSP with A* Algorithm

A Star is typically the most popular choice for path
finding, because it’s reasonably flexible and works
extremely well in an array of contexts. A Star is just like
Dijkstra’s algorithm as it enables you to find a speediest
path. A Star is like Greedy Best-First-Search as it can make
use of a heuristic to manual itself. In the simple case, it is as
fast as Best-First-Search. The secret for its success is that it
combines the information that Dijkstra’s criteria uses
(favoring vertices that are near to the starting point) as well
as information that Best-First-Search uses (favoring vertices
that are near to the goal). In the standard terminology used
when speaking about A Star, g(n) represents the complete
cost of the trail from the starting point to any vertex and,
and h(n) presents the heuristic estimated cost from vertex n
to the goal. Each time A Star chooses the vertex n that has
the lowest f(n) = g(n) + h(n).

Algorithm-

Procedure Proposed A* algorithm for TSP
Initialize ClosedSet =: empty

Volume | Issue VIII

[JRSI

ISSN 2321-2705



International Conference on Multidisciplinary Research & Practice

Initialize ,OpenSet := start_node

Initialize FromNode := empty

Initialize CoveredNodes := set of all nodes in graph
Initialize g_score|[start] :=0

Calculate

f_score[start] := g_score[start] + heuristic_cost_estimation
Loop Until OpenSet is not empty

Choose the current node from OpenSet with lowest f_score
If current node is not equal to start node Then

Reconstruct path from current_node

Remove current node from OpenSet

If current node not in covered nodes Then

Add current node to ClosedSet

For Each neighbour in neighbour nodes of current

If neighbour in ClosedSet or in Covered Nodes then
Continue loop;

Calculate tentative_score:= g_score_current + distance
between current and neighbour

If neighbour not in OpenSet or tentative_score < g_score
of current Then

Update FromNode with neighbour

Update g_score with tentative f_score

Update f_score = g_score + heuristic_cost_estimation

If neighbour not in OpenSet Then

Add neighbour to OpenSet

End For

End Loop

End

B. Applying TSP with AO* Algorithm

21 When a problem can be split into a set of sub problems,
where each sub problem can be solved separately and a
combination of these will be a solution, AND-OR graphs or
AND - OR trees are used for representing the solution. The
decomposition of the problem or problem reduction
generates AND arcs. ) One AND are may point to any
number of successor nodes. All these must be solved so that
the arc will rise to many arcs, indicating several possible
solutions. Hence the graph is known as AND - OR instead
of AND. Figure shows an example for AND — OR tree.

(et Vehicle

And Arc
Steal Vehicl

And Or Graph Example

Buy Vehicle

Page | 591

An algorithm to find a solution in an AND - OR graph must
handle AND area appropriately. A Star algorithm cannot
work with AND - OR graphs correctly and efficiently.

Algorithm-

Procedure Proposed AO* algorithm for TSP
Let G consists only to the node representing the initial state
call this node INIT.
Calculate h'(INIT).
Until INIT is labeled SOLVED or h' (INIT) becomes
greater than FUTILITY,
Repeat the following procedure.
Trace the marked arcs from INIT and select an unbounded
node NODE.
Generate the successors of NODE. If there are no
successors then assign FUTILITY as h' (NODE). This
means that NODE is not solvable. If there are successors
then for each one called SUCCESSOR, that is not also an
ancestor of NODE do the following

(a) Add SUCCESSOR to graph G

(b) If successor is not a terminal node, mark it solved
and assign zero to its h ' value.

(c) If successor is not a terminal node, compute it h'
value.
Propagate the newly discovered information up the graph
by doing the following. Let S be aset of nodes that have
been marked SOLVED. Initialize S to NODE. Until S is
empty repeat the following procedure;
() Select a node from S call if CURRENT and remove it
from S.
(b) Compute h' of each of the arcs emerging from
CURRENT, Assign minimum h'to CURRENT.
(c) Mark the minimum cost path as the best out of
CURRENT.
(d) Mark CURRENT SOLVED if all of the nodes connected
to it through the new marked are have been labeled
SOLVED.
(e) If CURRENT has been marked SOLVED or its h ' has
just changed, its new status must be propagate backwards up
the graph. Hence all the ancestors of CURRENT are
added to S.
End Loop
End Loop

I1l. EXPECTED OUTCOME

After the implementation of proposed research work, the
expected outcome includes graphical analysis generated on
the basis of the following:-

A. Computational Time: Time taken by both the algorithms
for solving the Travelling Salesman Problem.

B. Memory Consumption: Runtime memory required by
both the algorithms to solve Travelling Salesman Problem
individually.

Volume | Issue VIII

[JRSI

ISSN 2321-2705



International Conference on Multidisciplinary Research & Practice

IV. CONCLUSION

Both the heuristic search algorithms A* and AO* are
proposed for solving the traveling salesman problem.
Theoretically, both the algorithms provide optimal solution
to the problem according to the heuristics estimation. But
for following the AO* approach, it is must that the selection
of nodes for ANDing and ORing at particular level should
so done so that it should obtain the unbounded node,
avoiding backward propagation as possible and thus
acquiring possible minimum time for solving the TSP. Also
the FUTILITY value is so chosen in AO*, that it can lead to
obtaining the solution with minimizing the complexities.
Thus, both A* and AO* algorithms guarantees to provide
the solution as the least cost Hamiltonian cycle for
Travelling Salesman Problem.

REFERENCES

[1]. http:/fen.wikipedia.org/wiki/A*_search_algorithm

[2]. http://artificialintelligence-notes.blogspot.in/2010/07/problem-
reduction-with-ao-algorithm.html

[3]. Artificial Intelligence, second edition, by Elaine Rich and Kevin
Knight, published by Tata MacGraw-Hill Edition.

[4]. Introduction to Algorithms, second edition, by Thomas H. Coremen,
Charles E. Leieserson, Ronald L. Rivest, Clifford Stein, published by
Asoke Ghosh, Prentice-Hall of India Private Limited.

[5]. http://www.cs.cf.ac.uk/Dave/Al2/node26.html

Page | 592

Volume | Issue VIII

[JRSI

ISSN 2321-2705


http://www.cs.cf.ac.uk/Dave/AI2/node26.html

