
International Conference on Multidisciplinary Research & Practice P a g e | 590

Volume I Issue VIII IJRSI ISSN 2321-2705

A Comparative Study of Performance of

A*algorithm and AO* algorithm for Solving

Travelling Salesman Problem
Shraddha Ramteke

M.Tech Research Scholar, CSE

Chattrapati Shivaji Institute of Technology

Durg, India

Deepty Dubey

Associate Professor, CSE

Chattrapati Shivaji Institute of Technology

Durg, India

Abstract- According to travelling salesman problem (TSP)

given a number of cities and the distances between each couple

of cities, the aim is to find the smallest possible route that goes

to each city exactly once and returns to the origin city i.e., find

a least cost Hamiltonian cycle It is definitely an NP-hard

problem, important in operations investigation and theoretical

computer scientific discipline. In the theory involving

computational complexity, the decision version in the TSP

where, given any length L, the task is to decide whether the

graph offers any tour shorter than L belongs to the class of NP-

complete issues. Thus, it is possible which the worst-case

running time for virtually every algorithm for the TSP

increases superpolynomially or perhaps exponentially with the

quantity of cities. Heuristic search is definitely an AI search

technique that employs heuristic to its moves. Heuristic is a

rule of thumb that probably leads into a solution. Heuristics

play a major role in search strategies because of exponential

nature of the most extremely problems. Heuristics help to

reduce the quantity of alternatives from an exponential

number into a polynomial number. In AI, heuristic search

incorporates a general meaning, and an increasingly

specialized technical meaning. Within a general sense, the term

heuristic is utilized for any advice which is often effective, but

just isn't guaranteed to work always. The major aim of this

proposed research work is to analyze and compare the

performance of A* and AO* heuristic search algorithms for

solving TSP on the basis of providing the optimal path

according to Computational Time and runtime Memory

Consumption.

Keywords—A* algorithm, AO algorithm*, Travelling Salesman

Problem (TSP).

I. INTRODUCTION

ravelling Salesman Problem is a combinational

problem consisting of some cities and some edges

connecting one city to other. TSP can be represented by a

graph G (V, E), where V is the set of vertices (cities) and E

is the set of edges(path) between each of the two vertices

specific to the graph. TSP is to discover the shortest path in

the graph G setting up a least cost Hamiltonian Cycle. If

there exists a path between the two cities i and j, then the

distance between these cities can be computed as-.

TSP deals with real time scenario for a traveling salesman,

where the most important for him to follow the shortest and

optimal path having the minimum cost so as to gain

maximum profit and to deliver the goods lesser time as

much as possible. Path optimization is one of the major

problems while travelling from the source to destination

city visiting each city only once. Path can be calculated

using many strategies but to decide the best possible

strategy according to the number of cities is a difficult task.

TSP Heuristic: Whenever the salesman is at town i this

individual chooses as their next city i. e., the city j which is

why the c(i, j) charge, is the bare minimum among all c(i, k)

charges, where k will be the pointers of the city the

salesman has not visited yet. In case more than one city

gives the particular minimum cost, the city with the smaller

k is going to be chosen. This greedy algorithm selects the

lowest priced visit in each step and won't care whether this

will lead to a correct solution or not.

Input

Network formed from n cities

Cost c(i,j) of traveling from one city to next city,

where i & j = 1,2,3 . . , n.

Start with initial city.

Output

A least cost Hamiltonian cycle.

II. PROPOSED METHODOLOGY

A. Applying TSP with A* Algorithm

 [1]
 A Star is typically the most popular choice for path

finding, because it’s reasonably flexible and works

extremely well in an array of contexts. A Star is just like

Dijkstra’s algorithm as it enables you to find a speediest

path. A Star is like Greedy Best-First-Search as it can make

use of a heuristic to manual itself. In the simple case, it is as

fast as Best-First-Search. The secret for its success is that it

combines the information that Dijkstra’s criteria uses

(favoring vertices that are near to the starting point) as well

as information that Best-First-Search uses (favoring vertices

that are near to the goal). In the standard terminology used

when speaking about A Star, g(n) represents the complete

cost of the trail from the starting point to any vertex and,

and h(n) presents the heuristic estimated cost from vertex n

to the goal. Each time A Star chooses the vertex n that has

the lowest f(n) = g(n) + h(n).

Algorithm-

Procedure Proposed A* algorithm for TSP

Initialize ClosedSet =: empty

T

International Conference on Multidisciplinary Research & Practice P a g e | 591

Volume I Issue VIII IJRSI ISSN 2321-2705

Initialize ,OpenSet := start_node

Initialize FromNode := empty

Initialize CoveredNodes := set of all nodes in graph

Initialize g_score[start] := 0

Calculate

 f_score[start] := g_score[start] + heuristic_cost_estimation

Loop Until OpenSet is not empty

Choose the current node from OpenSet with lowest f_score

If current node is not equal to start node Then

Reconstruct path from current_node

Remove current node from OpenSet

If current node not in covered nodes Then

Add current node to ClosedSet

For Each neighbour in neighbour nodes of current

If neighbour in ClosedSet or in Covered Nodes then

Continue loop;

Calculate tentative_score:= g_score_current + distance

between current and neighbour

If neighbour not in OpenSet or tentative_score < g_score

of current Then

Update FromNode with neighbour

Update g_score with tentative f_score

Update f_score = g_score + heuristic_cost_estimation

If neighbour not in OpenSet Then

Add neighbour to OpenSet

End For

End Loop

End

B. Applying TSP with AO* Algorithm

[2]
 When a problem can be split into a set of sub problems,

where each sub problem can be solved separately and a

combination of these will be a solution, AND-OR graphs or

AND - OR trees are used for representing the solution. The

decomposition of the problem or problem reduction

generates AND arcs.
[3]

 One AND are may point to any

number of successor nodes. All these must be solved so that

the arc will rise to many arcs, indicating several possible

solutions. Hence the graph is known as AND - OR instead

of AND. Figure shows an example for AND – OR tree.

An algorithm to find a solution in an AND - OR graph must

handle AND area appropriately. A Star algorithm cannot

work with AND - OR graphs correctly and efficiently.

Algorithm-

Procedure Proposed AO* algorithm for TSP

Let G consists only to the node representing the initial state

call this node INIT.

Calculate h' (INIT).

Until INIT is labeled SOLVED or h' (INIT) becomes

greater than FUTILITY,

Repeat the following procedure.

 Trace the marked arcs from INIT and select an unbounded

node NODE.

Generate the successors of NODE. If there are no

successors then assign FUTILITY as h' (NODE). This

means that NODE is not solvable. If there are successors

then for each one called SUCCESSOR, that is not also an

ancestor of NODE do the following

 (a) Add SUCCESSOR to graph G

 (b) If successor is not a terminal node, mark it solved

and assign zero to its h ' value.

 (c) If successor is not a terminal node, compute it h'

value.

Propagate the newly discovered information up the graph

by doing the following. Let S be a set of nodes that have

been marked SOLVED. Initialize S to NODE. Until S is

empty repeat the following procedure;

(a) Select a node from S call if CURRENT and remove it

from S.

(b) Compute h' of each of the arcs emerging from

CURRENT, Assign minimum h' to CURRENT.

(c) Mark the minimum cost path as the best out of

CURRENT.

(d) Mark CURRENT SOLVED if all of the nodes connected

to it through the new marked are have been labeled

SOLVED.

(e) If CURRENT has been marked SOLVED or its h ' has

just changed, its new status must be propagate backwards up

the graph. Hence all the ancestors of CURRENT are

added to S.

End Loop

End Loop

III. EXPECTED OUTCOME

After the implementation of proposed research work, the

expected outcome includes graphical analysis generated on

the basis of the following:-

A. Computational Time: Time taken by both the algorithms

for solving the Travelling Salesman Problem.

B. Memory Consumption: Runtime memory required by

both the algorithms to solve Travelling Salesman Problem

individually.

International Conference on Multidisciplinary Research & Practice P a g e | 592

Volume I Issue VIII IJRSI ISSN 2321-2705

IV. CONCLUSION

Both the heuristic search algorithms A* and AO* are

proposed for solving the traveling salesman problem.

Theoretically, both the algorithms provide optimal solution

to the problem according to the heuristics estimation. But

for following the AO* approach, it is must that the selection

of nodes for ANDing and ORing at particular level should

so done so that it should obtain the unbounded node,

avoiding backward propagation as possible and thus

acquiring possible minimum time for solving the TSP. Also

the FUTILITY value is so chosen in AO*, that it can lead to

obtaining the solution with minimizing the complexities.

Thus, both A* and AO* algorithms guarantees to provide

the solution as the least cost Hamiltonian cycle for

Travelling Salesman Problem.

REFERENCES

[1]. http://en.wikipedia.org/wiki/A*_search_algorithm

[2]. http://artificialintelligence-notes.blogspot.in/2010/07/problem-
reduction-with-ao-algorithm.html

[3]. Artificial Intelligence, second edition, by Elaine Rich and Kevin

Knight, published by Tata MacGraw-Hill Edition.
[4]. Introduction to Algorithms, second edition, by Thomas H. Coremen,

Charles E. Leieserson, Ronald L. Rivest, Clifford Stein, published by

Asoke Ghosh, Prentice-Hall of India Private Limited.
[5]. http://www.cs.cf.ac.uk/Dave/AI2/node26.html

http://www.cs.cf.ac.uk/Dave/AI2/node26.html

