
Volume II, Issue IX, September 2015 IJRSI ISSN 2321 - 2705

www.rsisinternational.org Page 119

Image Processing using Xilinx System Generator

(XSG) in FPGA

Ankita gupta
1
, Himanshu Vaishnav

2
, Himanshu Garg

3

1
Asst. professor, ECE, Poornima Group Of Institutions, jaipur, india

2
Student, ECE, Poornima Group Of Institutions, Jaipur, India

3
Student, ECE, Poornima Group Of Institutions, Jaipur, India

Abstract: This paper presents the conceptual description of

hardware & software simulation for image processing using

Xilinx System Generator (XSG). This paper provides the

theory and practical aspects of technique, which provide a

set of Simulink model for several hardware operations using

various Xilinx that could be implemented on various FPGA.

This paper presents an efficient architecture for various

image processing algorithms for image negatives, image

enhancement, contrast stretching, Image Edge Detection,

image Brightness Control, Range Highlighting

Transformation, Parabola transformation for grayscale and

color images by using fewest possible System Generator

Blocks. Performances of theses architectures implemented in

FPGA card XUPV5-LX110T prototyping Virtex5 were

presented.

Key Word— Image Processing, Xilinx System Generator, Field

Programmable Gate Array (FPGA), Simulink and

transformation.

I. INTRODUCTION

n this paper, we study digital images and its processing

techniques, specifically point processing algorithms.

The handling of digital images is a subject of widespread

interest. Image processing is used to modify pictures to

improve them (enhancement, restoration), extract

information (analysis, recognition) and change their

structure (composition, image editing). FPGAs are

increasingly used in modern imaging applications namely

image filtering , medical imaging , image compression

and wireless communication. The need to process the

image in real time, leads to implement them in

hardware, which offers parallelism, thus significantly

reduces the processing time. The

drawback of most of the methods is that they use a high

level language for coding, which requires thousands of

coding lines for image processing applications which is

inefficient as it takes much time. In order to solve this

problem, a tool called Xilinx System Generator(XSG),

with graphical interface under the MATLAB-Simulink is

used which makes it very easy to handle with respect to

other software for hardware description. FPGA is a form

of highly configurable hardware while DSPs are

specialized form of microprocessors. System Generator is

the modeling tool in which designs are captured in the

DSP friendly Simulink modeling environment using

Xilinx specific Block set. Point processes are the simplest

and basic image processing operations. point operations

are the simplest, they contain some of the most powerful

and widely used of all image processing operations. They

are especially useful in image pre-processing, where an

image is required to be modified before the man job is

attempted. Important point Processing operations are

arithmetic operations, XOR operations, histograms with

equalization, and Contrast stretching and intensity

transformations along with the implementations which are

done using XSG.

The rest of the paper is organized as follows. Section -2

Discusses about Xilinx System Generator[10] and

section-3 discusses about the Design Flow of Image

Processing using the XSG[3]. Section-4 & 5 is all about

the Image Processing block And Image Processing

technique using XSG, Image Pre processing & post

Processing technique[6] and other image Processing

Techniques are Image Enhancement, Image negative[6],

Image Edge Detection[12], image Brightness Control,

Image Contrast Stretching[10], Range Highlighting

Transformation, Parabola transformation[4]. Section-6

Discusses about Hardware Implementation. Section-7

Discusses about hardware Co-simulation which includes

(a) A Compilation Target and (b) Clocking Tab,(c)

Calling the Code generator[10] and last Section-8

Discusses the Conclusion.

II. XILINX SYSTEM GENERATOR

System Generator is part of the ISE® Design Suite and

provides Xilinx DSP Block set such as adders,

multipliers, registers, filters and memories for application

specific design. These blocks leverage the Xilinx IP core

generators to deliver optimized results for the selected

device. Previous experience with Xilinx FPGAs or RTL

design methodologies is not required when using System

Generator. Designs are captured in the DSP friendly

Simulink modeling environment using a Xilinx specific

Block set. All of the downstream FPGA implementation

steps including synthesis and place and route are

automatically performed to generate an FPGA

programming file. Advantage of using Xilinx system

generator for hardware implementation is that Xilinx

Block set provides close integration with MATLAB

Simulink that helps in co-simulating the FPGA module

with pixel vector provided by MATLAB Simulink

Blocks. The System Generator block defines which type

of FPGA board will be used, as well as provide several

additional options for clock speed, compilation type and

analysis. With a library of over 90 DSP building blocks,

System Generator allows for faster prototyping and design

from a high-level programming stand point. Some blocks

I

Volume II, Issue IX, September 2015 IJRSI ISSN 2321 - 2705

www.rsisinternational.org Page 120

such as the M-code and Black box allow for direct

programming in MATLAB M-code, C code, and Verilog

to simplify integration with existing projects or

customized block behavior. System Generator projects

can also easily be placed directly onto the FPGA as an

executable bit stream file as well as generating Verilog

code for additional optimizations or integration with

existing projects within the Xilinx ISE environment[10].

III. DESIGN FLOW FOR IMAGE PROCESSING

WITH XILINX SYSTEM GENERATOR

System Generator works within the Simulink model-

based design methodology. Often an executable spec is

created using the standard Simulink block sets. This spec

can be designed using floating-point numerical precision

and without hardware detail. Once the functionality and

basic dataflow issues have been defined, System

Generator can be used to specify the hardware

implementation details for the Xilinx devices. System

Generator uses the Xilinx DSP blockset for Simulink and

will automatically invoke Xilinx Core Generator™ to

generate highly-optimized netlists for the DSP building

blocks. System Generator can execute all the downstream

implementation tools to product a bit stream for

programming the FPGA. An optional test bench can be

created using test vectors extracted from the Simulink

environment for use with ModelSim or the Xilinx ISE®

Simulator. The System Generator of DSP is shown in

Fig.1

 Fig.1: System Generator for DSP

 For accomplishing Image processing task using Xilinx

System Generator needs two Software tools to be

installed. One is MATLAB Version R2011a or higher and

Xilinx ISE 14.1. The System Generator token available

along with Xilinx has to be configured to MATLAB. This

result in addition of Xilinx Block set to the Matlab

Simulink environment which can be directly utilized for

building algorithmic model.

 The algorithms are developed and

models are built for image negative, enhancement etc.

using library provided by Xilinx Blockset. The image

pixels are provided to Xilinx models in the form of

multidimensional image signal or R|G|B separate color

signals in the form of vector in Xilinx fixed point format.

These models are simulated in Matlab Simulink

environment with suitable simulation time and simulation

mode and tested.

 The reflected results can be seen on a video viewer. Once

the expected results are obtained System Generator is

configured for suitable FPGA board. FPGA board that

used here is Virtex5. I/O planning and Clock planning is

done and the model is implemented for JTAG hardware

co-simulation. The System generator parameters are set

and generated. On compilation the netlist is generated and

a draft for the model and programming file in VHDL is

created which can be accessed using Xilinx ISE. The

module is checked for behavioral syntax check,

synthesized and implemented on FPGA. The Xilinx

System Generator itself has the feature of generating User

constraints file (UCF), Test bench and Test vectors for

testing architecture. Xilinx System Generator (XSG) has

created primarily to deal with complex Digital signal

processing (DSP) applications, but it has other application

of this theme such as image processing also work with it.

Bitstream compilation is done which is necessary to

create an FPGA bit file which is suitable for FPGA input.

The Fig.2 shows the Design flow for Xilinx System
Generator[3].

Fig.2: Design Flow of Xilinx System Generator

IV. SCHEMATIC OF IMAGE PROCESSING

TECHNIQUE

The entire operation for any image processing technique

using Simulink and Xilinx blocks mainly goes through

three phases .

 A. Image pre processing blocks:

 As image is two dimensional (2D) arrangement, to

meet the hardware requirement the image should be

preprocessed and given as one dimensional (1D) vector.

The model based design used for image pre processing is

shown in Fig.3. To process 2D image it is converted into

1D by using convert 2D to 1D block. Frame conversion

block sets output signal to frame based data and provided

to unbuffer block which converts this frame to scalar

samples at a higher sampling rate.

 Fig.3: Image pre processing blocks

Volume II, Issue IX, September 2015 IJRSI ISSN 2321 - 2705

www.rsisinternational.org Page 121

B. Image processing technique using XSG:

All Xilinx blocks should be connected between Gateway

In and Gateway Out. Between those two blocks any

technique can be designed. All Xilinx blocks work on

fixed point but the real world signal (image, voice signal,

etc.) are floating point so here the gateway in and gateway

out blocks acts as translators for converting the real world

signal into the desired form.

 Fig.4: Xilinx Blocks

 C. Image post processing blocks:

 The image post processing blocks which are used to

convert the image output back to floating point type are

shown in Fig.5. For post processing it uses a buffer block

which converts scalar samples to frame output at lower

sampling rate, followed by a 1D to 2D format signal

block[5].

 Fig.5: Image post processing blocks

V. IMAGE PROCESSING TECHNIQUES USING

XILINX BLOCKS

In this section the basic image processing techniques

namely image enhancement, color to gray scale

conversion, image negative and image edge detection are

implemented using Xilinx blocks and then they are

implemented on VIRTEX5 FPGA

A. Image Enhancement

 Image enhancement is basically improving the

interpretability or perception of information in images for

human viewers and providing better input for other

automated image processing techniques. The image can

be enhanced by adding a constant value (90) to the

corresponding R, G and B components . If the input

image is gray scale image only one component will be

there instead of three components i.e.; R, G and B. In this

we shows that how image can be enhanced by adding a

constant to each pixel values. Image filtering can also be

done using model based design different filtering

architecture can be defined and Xilinx block can be

created. The Image enhancement algorithm shown in

Fig.6 and Fig.7,respectively for gray and color image.

Fig.6: Algorithm for Grayscale Image Enhancement

Fig.7: Algorithm for Color Image Enhancement

 Original Image Output Image

B. Image Negative

A negative image is a total inversion, in which light areas

appear dark and vice versa. A negative color image is

additionally color-reversed, with red areas appearing

cyan, greens appearing magenta and blues appearing

yellow. Reversing the intensity levels of an image

produces the equivalent of a photographic negative. This

type of processing is particularly suited for enhancing

white or gray detail embedded in dark regions of an

image, especially when the black areas are dominant in

size. Image negative can be implemented by simply

subtracting the R, G, B components from the constant

value 255 as shown in Fig.8. Similarly for a gray scale

image only one component will be there instead of R, G

and B.

 Fig.8: Image negative

Volume II, Issue IX, September 2015 IJRSI ISSN 2321 - 2705

www.rsisinternational.org Page 122

The negatives digitized images are useful in many

applications, such as medical imaging and representation

in photographs of a monochrome screen with films with

the idea of using the resulting negative slides as normal.

Inverting the sample values in image produces the same

image that would be found in a film negative. In Matlab

this operation can be obtained by XOR function block or

simple Inverter block.

 Original Image Output Image

C. Image Edge Detection

 Edge detection is one of the most commonly used

operations in image analysis and there are probably more

algorithms in literature for enhancing and detecting edges.

An edge is point of sharp change in an image, a region

where pixel locations have abrupt luminance change i.e. a

discontinuity in gray level values. There are different edge

detector operator masks to detect edges. They are

Ordinary operator, Roberts’s operator, 4-Neighbour

operator, Prewitt operator and Sobel operator. To perform

the edge detection a convolution operation of the input

image with any of the above mentioned filter masks to be

performed. The design flow of edge detection using

Xilinx System Generator is shown in Fig. 9(SED) and

Fig.10(CED).

 Original Image Output Image

 Fig.9: Sobel edge detection

 Fig.10: Canny edge detection

D. Image Brightness Control

The arithmetic operations include adding, subtracting,

dividing, and multiplying pixels by a constant value.

Addition and subtraction can adjust the brightness of the

image . Shows the XSG blocks involved while adding and

subtracting 40 from the image. The algorithm for the

image brightness control is shown in Fig.11

 Fig.11: Algorithm for Brightness Control

 Original Image Output Image

E. Image Contrast Stretching

The contrast of an image is its distribution of light and

dark pixels. To stretch a histogram, contrast stretching is

applied to an image to fill the full dynamic range of the

image. We can stretch out the gray levels in the center of

the range by applying piecewise linear function according

to the equation.

New pixel = (12/4) (old pixel-5) + 2 (1)

where new pixel is its result after the transformation.

Fig.12 shows the XSG blocks for the above contrast

stretching to the finger print image and the results

Volume II, Issue IX, September 2015 IJRSI ISSN 2321 - 2705

www.rsisinternational.org Page 123

respectively we demonstrate another piecewise linear

function which is as follows:

 j = ((255-193) / (255-160)) (i-160) + 192 (2)

Where i is the original gray level and j is its result after

the transformation. Fig. Shows the XSG blocks for the

above contrast stretching to the finger print image and the

results respectively.

 Fig 12: Algorithm for Contrast Stretching

 Original Image Output Image

F. Range highlighting Transformation

An intensity transform can also highlight a range of pixels

while keeping others constant. Fig. shows the Xilinx

blocks implementation and the resulting image.

function z = new pixel one(x, y, c)

if (x > y) & (x < c)

 z = x;

 else

 z = 1;

Fig.13:Algorithm for Range Highlighting Transformation

 Original Image Output Image

G. Parabola Transformation

The two formulas for the parabola transformation are as

follows:

new pixel = 255 – 255 ((old pixel/128) -1)2.... (4) and

new pixel = 255 ((old pixel/128) -1)2(5)

Xilinx blocks are connected for the above equations and

displayed in Fig. Both the results are observed and

produced .Similarly, polarize transformation,

iso-intensity contouring transformation and

bit-clipping transformation can also be implemented. The

Algorithm for parabola transformation s shown in Fig.14

 Fig.14: Algorithm for Parabola Transformation

 Original Image Output Image

VI. HARDWARE IMPLEMENTATION

[5]The architectures explained above deal only with

software simulation level. For implementing this design in

a FPGA board the entire module should be converted to

FPGA synthesizable one. For that purpose main module

for any image processing is converted for JTAG hardware

co-simulation, this is done with the help of System

generator token. By clicking the system generator token a

new window will open as shown in Fig.15. This block is

configured according to the target platform and a bit

stream (*.bit) file is generated. After the bit stream file is

generated, hardware co-simulation target is selected and

in this project, Spartan 3E starter kit (XC3S500E-FG320)

is used for board level implementation. After clicking the

generate button in the System generator block a hardware

co-simulation block will be generated. To perform the

hardware software co-simulation, the hardware co-

simulation block added in the design and thereby we can

see FPGA and XSG/software output at a time. The entire

architecture with the hardware and software co-simulation

design for the edge detection is shown in Fig.16.

Volume II, Issue IX, September 2015 IJRSI ISSN 2321 - 2705

www.rsisinternational.org Page 124

 Fig15: System generator token

 Fig.16: Hardware software Co-simulation for the edge detection

VII. HARDWARE CO-SIMULATION

Once your hardware board is installed, the starting point

for hardware co-simulation is the System Generator

model or subsystem you would like to run in hardware. A

model can be co-simulated, provided it meets the

requirements of the underlying hardware board. This

model must include a System Generator token; this block

defines how the model should be compiled into hardware.

The first step in the flow is to open the System Generator

token dialog box and select a compilation type under

Compilation. Steps Followed in Hardware Co-simulation

System generator is configured as:

A. Compilation Target

 Parts: Defines the FPGA part to be used (Virtex5

XUPV5-LX110T). Resulting library is created as

follows

 Fig.17: Hardware co-simulation block

 Synthesis tool: Specifies the tool to be used to

synthesize the design.

 Hardware Description Language: Specifies the HDL

language to be used for compilation i. e Verilog.

 Create test bench: This instructs System Generator to

create a HDL test bench.

 Design is synthesized and implemented.

B. Clocking Tab

 FPGA clock period(ns): Defines the period in

nanoseconds of the system clock

 Clock pin location: Defines the pin location for the

hardware clock.

C. Calling the Code Generator

 The code generator is invoked by pressing the

Generate button in the System Generator token dialog

box[10].

VIII. CONCLUSION

We conclude from this paper that this paper is a Xilinx

System Generator is a good platform to perform the

Image Processing in Software and Hardware manner. It is

a Versatile tool to perform Image Processing and it

provide rapid means to do hardware implementation of

complex technique used for processing images with

minimum resource and minimum delay. It provides

simplicity and ease for Hardware implementation. In this

paper, a real-time image processing algorithms are

implemented on FPGA. Implementation of these

algorithms on a FPGA is having advantage of using large

memory and embedded multipliers. This paper

implemented for high speed image enhancement

applications using FPGA. The image enhancement

techniques such as brightness and contrast adjustment are

important factors in medical images. This paper explains

implementation of Image Enhancement, Image negative,

Image Edge Detection, image Brightness Control, Image

Contrast Stretching, Range Highlighting Transformation,

Parabola transformation.

REFERENCES

[1]. Xilinx System Generator User's Guide.

[2]. M.Ownby and W.H.Mahmoud, "A design methodology for

implementing DSP with Xilinx System Generator for Matlab,"
IEEE InternationalcSymposium on System Theory, pp.404-408,

March 2003.

[3]. Xilinx Inc., " System Generator for Digital Signal Processing"
http://www.xilinx.com / tools / dsp.htm.

[4]. Kalyani A. Dakre and Prof. P. N. Pusdekar" "Image Enhancement

using Hardware co- simulation for Biomedical",
International Journal on Recent and Innovation Trends in

Computing and Communication Volume: 3 Issue: 2.

[5]. R.Srinivasa Rao and R. Nakkeeran , "High level abstraction
method for implementing Image Processing Techniques on

FPGA", International Conference on Knowledge
Collaboration in Engineering March 27- 28, 2015

[6]. Alareqi Mohammed, Elgouri Rachid and Hlou Laamari, "

High Level FPGA Modeling for Image Processing

Algorithms Using Xilinx System Generator ". International

Volume II, Issue IX, September 2015 IJRSI ISSN 2321 - 2705

www.rsisinternational.org Page 125

Journal of Computer Science and Telecommunications

[Volume 5, Issue 6, June 2014] .
[7]. T. Saidani, D. Dia, W. Elhamzi, M. Atri and R.Tourki,

“Hardware Co-simulation for Video Processing Using

Xilinx System Generator,” Proceedings of the World Congress
on Engineering, vol.1, Jun 2009. London, U.K

[8]. A. T. Moreo, P. N. Lorente, F. S. Valles, J. S. Muro and C.

F. Andres, Experiences on developing computer vision hardware
algorithms using Xilinx system generator” Microprocessors and

Microsystems, Vol. 29, pp.411-419 November 2005.

[9]. C.John Moses, D. Selvathi, S.Sajitha Rani, “FPGA Implementation
of an Efficient Partial Volume Interpolation for Medical Image

Registration” IEEE International Conference on Communication

Control and Computing Technologies(ICCCCT-10), pp.132–
137,Oct.2010.

[10]. MS.DIPIKAS.WARKAR, DR.U.A.KSHIRSAGAR "FPGA

Implementation of Point Processing Operation using Hardware
Simulation", International Journal of Advanced Research in

Computer and Communication Engineering Vol. 4, Issue 4, April

2015.
[11]. R. Gonzalez, R. Woods, “Digital Image Processing” Third edition:

Prentice-Hall 2008.

[12]. Ravi.s, Abdul Rahim.B, Fahimuddin shaik," FPGA Based Design
and Implementation of Image Edge Detection Using Xilinx System

Generator", International Journal of Engineering Trends and

Technology (IJETT – Volume 4 Issue 10 - Oct 2013.

